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It is shown that the combination of spin-polarization and field-emission energy distribution
measurements on ferromagnetic transition metals will provide direct information about the
one-dimensional surface density of states in a direction normal to the metal surface for a given spin.

We have recently shown® (in a paper hereafter
referred to as I) that field-emission energy distri-
bution (FEED) measurements of a metal surface
yield direct information about the one-dimensional
surface density of states in the direction normal
to the surface. This result was based on the in-
dependent-particle model for the metal electrons.
Recent tunneling® and photoemission®~ experi-
ments on ferromagnetic transition metals have
measured the polarization of the emitted electrons.
The observed polarization provided evidence that
the independent-particle model may not be valid
for these materials presumably because of strong
electron-electron corrections.®™® The only field-
emission measurements performed on these metals
were total current measurements.” They did not
show any anomalous polarization of the emitted
electrons, however the validity of these experi-
ments is not generally accepted, particularly
since their subsequent field-emission measure-
ments on W indicated a polarization of about 10%.*°
This same group has also reported field-emission
measurements on Ge in high magnetic fields.!!
Miiller et al.*? have found a polarization of about
89% in the current field emitted from EuS-coated
W tips. Politzer and Cutler®® have carried out an
independent electron calculation for the field emis-
sion from Ni. Some of their conclusions are con-
sistent with the theory of I; for example, the
factor in I denoted by N,, can vanish by reason of
symmetry for a d-band electron traveling along a
symmetry axis so that the theory in I takes account
of the sensitivity of the tunneling probability to the
metal wave-function symmetry. Similarly, the
smaller probability of d electron tunneling com-
pared to s electron tunneling'* is reflected in the
factor N,,. In this paper we extend our previous
work to the case of the ferromagnetic transition
metals by discarding the assumption that the inde-
pendent-particle model is valid for the metal.

Appelbaum and Brinkman'® (AB) have derived
a general expression for the tunneling current be-
tween two normal metals which can be adapted to
the case of field emission:
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where j,(w) is the FEED current of spin ¢ at ener-
gy w. G'*) is the Green’s function of the left
system which is essentially the metal and is de-
fined more precisely in I. G®) is the Green’s
function of the right system which is essentially
the external electric field and x, is a point within
the tunneling barrier as described in I.

In order to evaluate j,(w) we must know G¥)
and G'® near x=x'=x, as indicated by Eq. (1).
G®) is the Green’s function for the one-particle
Hamiltonian of the right system and may be
written
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where Yz(T) is given by Eq. (14) of Ref. 1 for
x~x'~x, and Ep is an eigenvalue of the right-
system Hamiltonian.

The left system consists of the metal plus the
electric field in the region between the metal sur-
face and x, as shown in Ref. 1, Fig. 2(a). The
left system is described by a many-electron
Hamiltonian, thus the Green’s function G’ sat-
isfies
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where H, (T) is the one-particle part of the left-
system Hamiltonian, G*)(50) is the spin-flip
Green’s function and Z7, 2°° are appropriate self-
energies. It is assumed that the image potential

3208



11 DETERMINATION OF THE SPIN-POLARIZED SURFACE... 3209

is contained in H; (). For T or ¥’ in the tunneling
barrier we expect =, (¥, ') =0 and the left-system
Hamiltonian may be taken to be the independent-
particle Hamiltonian, H;.2 Consequently, it fol-
lows from AB (3.11)-(3.14) that for x~ x’ ~ x,,
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where ¥ is given by Ref. 1, Eq. (18) with N, re-
placed by N7, a spin-dependent normalization
factor. E; , is the excitation energy required

to remove an electron spin 0 from the left system.

Use of Egs. (2) and (4) in (1) yields Eq. (22) of
Ref. 1. )

Proceeding as in I leads directly to the equiva-
lent'® of Eq. (32) of Ref. 1,

Jo(w)/jow) = Ag(w)py, o(w, Xm) , ®)

where j,(w) is the current per spin that would be
observed if the metal were free-electron-like.
A (w) is a slowly varying function of w that in-
cludes j,(w)™*, and
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where ), denotes a sum over metal states with
momentum normal to the metal surface. a3(x,)
is the component of the metal wave function for
spin o that has total momentum parallel to the
surface equal to zero:

)= [ dSYn o), )

where ¢, ,(T) is the metal wave function and the
integral is over a plane parallel to the metal
surface and a distance x, away from it. Similarly,
in Eq. (32) of Ref. 1, ¥,(x,) should be replaced
by a(x,)= f,‘:,,mdS ¥n(T) because a is the component
of §,, with zero total momentum parallel to the
surface and it is just that component which de-
termines the tunneling probability. The mathe-
matical details will be included in a later publica-
tion.' In Eq. (7), x, is taken to be the classical
turning point located 2-3 A outside the metal sur-
face. Thus combined FEED and spin-polarization
measurements will provide direct information
about the one-dimensional “surface” density of
states for a given spin.

We wish to thank Dr. C. Herring for drawing
our attention to this problem.
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