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Abstract

We present a theoretical study of in-plane magnetization reversal for vicinal

ultrathin films using a one-dimensional micromagnetic model with nearest-

neighbor exchange, four-fold anisotropy at all sites, and two-fold anisotropy

at step edges. A detailed “phase diagram” is presented that catalogs the

possible shapes of hysteresis loops and reversal mechanisms as a function

of step anisotropy strength and vicinal terrace length. The steps generically

nucleate magnetization reversal and pin the motion of domain walls. No sharp

transition separates the cases of reversal by coherent rotation and reversal by

depinning of a 90◦ domain wall from the steps. Comparison to experiment is

made when appropriate.
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I. INTRODUCTION AND BACKGROUND

Laboratory studies of ultrathin films of transition metals confirm the general principle

that broken symmetry induces magnetic anisotropy. [1,2] The most common example is the

loss of translational invariance at the free surface of a film or at an internal interface of a

multilayer structure. The phenomenological “broken-bond” model of Néel [3] then provides

an intuitive way to understand why atoms at the surface or interface favor alignment of their

magnetic moments either parallel or perpendicular to the broken symmetry plane. [4] In some

cases, perpendicular anisotropy occurs that is strong enough to overwhelm the tendency for

in-plane magnetization favored by magnetostatic shape anisotropy. This situation can be

exploited for a variety of applications and has been the subject of very thorough experimental

and theoretical work. [5]

In this paper, we focus on a related phenomenon: the magnetic anisotropy induced

by crystallographic steps on the surface of a single crystal film. Here, it is the loss of

translational invariance in directions parallel to the (nominal) surface plane that is germane.

Application of the Néel model suggests that local moments will tend to align themselves

either parallel or perpendicular to the local step orientation. The magnitude of the effect

(on a per atom basis) is predicted to be comparable to conventional surface anisotropy.

However, it was not until 1987 that Hillebrands et al. invoked step-induced anisotropy

to rationalize their surface spin wave data for epitaxial Fe/W(110). [6] Since all ultrathin

films invariably have step edges (associated either with steps on the substrate or with the

nucleation and growth of monolayer height islands during the growth process) it is not

surprising that subsequent experimental studies often cite this phenomenon in connection

with “surface roughness effects”. [7]

We recently presented a theoretical study of in-plane magnetization reversal in ultrathin

films with step structure in typical samples. [8] The model film was comprised of an array

of square, monolayer-height, magnetic islands of variable size and density on top of a few

complete magnetic layers. Classical XY-type spins at each site were presumed to rotate in
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the surface plane subject to nearest-neighbor ferromagnetic exchange, an intrinsic four-fold

in-plane anisotropy at all surface sites, Zeeman energy from an external field, and a two-

fold anisotropy at island perimeter sites only. Numerical simulations and simple geometric

scaling arguments predicted significant variations in coercivity as a function of coverage for

layer-by-layer growth at low island nucleation densities. This result was found to be in

semi-quantitative agreement with the surface magneto-optic Kerr effect (SMOKE) data of

Buckley et al. [9] for the Cu/Co/Cu(001) system. A subsequent Monte Carlo simulation

study [10] of coercivity in islanded Fe sesquilayers on W(110) using an in-plane Ising-type

spin model yielded similarly good results in comparison to experiment.

The theoretical results of Ref. [8] were interpretable on the basis of several qualitative

concepts: (i) nucleation of magnetization reversal at island edges; (ii) pinning of domain walls

at island edges; and (iii) fusion of nearby domains. Unfortunately, even the simple island

morphology studied there was still too complex to permit a detailed analytic treatment of

the reversal process as one might desire. For this reason, we analyze an even simpler problem

in this paper: zero-temperature, in-plane magnetization reversal in ultrathin vicinal films.

The basic model sketched above remains unchanged except that the morphology is simplified

to a periodic array of flat magnetic terraces separated by straight, monolayer-height steps.

This renders the problem one-dimensional and amenable to analytic study.

One-dimensional models of magnetization reversal with inhomogeneous or competing

anisotropies have been a fixture of the magnetism literature for many years. Most of these

papers focus on the demonstration that planar defects in bulk ferromagnets can nucleate

reversal and/or pin domain wall motion. If operative, these effects call into question the

suitability of the popular single-domain, coherent rotation model of Stoner and Wohlfarth

[11] as a description of magnetization reversal. Filipov [12] and later Brown [13] studied the

effect of surface anisotropies on the nucleation field (where the magnetization first deviates

from its saturation value) while Mitsek and Semyannikov [14] and later Friedberg and Paul

[15] focused on the depinning of pre-existing reversed domains as a determinant of the

coercive field (where the magnetization projected on the external field direction first falls to
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zero). In recent years, Arrott has been explicit in the application of these ideas to ultrathin

films with and without step structure. [16] Our analysis will be seen to substantially extend

all of these studies.

On the experimental side, Heinrich et al. [17] first drew attention to the fact that a step-

induced uniaxial anisotropy must be present on vicinal surfaces. Subsequent work confirmed

this observation [18–20] and revealed a number of other systematic features. As particular

motivation for the present work, we draw attention to the SMOKE data of Kawakami et al.

[21] obtained from Fe films grown on stepped Ag(001) substrates. Characteristic “split-loop”

hysteresis curves were found where the degree of splitting varied smoothly with the degree

of vicinality. The authors interpreted their results using a single domain switching model

where the step edge anisotropy was distributed over the entire surface. The analysis below

will make clear the extent to which this description can be regarded as reliable.

The plan of our paper is as follows. Section II is an overview that includes (i) a discussion

of the model assumptions; (ii) the definition of important dimensionless quantities and the

presentation of a “phase diagram” that catalogs the possible hysteresis loop topologies than

can occur; (iii) a qualitative discussion of the physical mechanisms of magnetization reversal

that can occur; and (iv) a preliminary comparison to relevant experiments. Section III

reports our mathematical procedures. We define the Hamiltonian used and solve the model

exactly to extract the physics of zero-temperature reversal in the single domain and single

step limits. The intermediate case of multiple steps is formulated and solved numerically.

Section IV is a discussion that complements the earlier overview in light of our analytic and

numerical results. We consider the crossover between coherent rotation and domain wall

depinning, discuss relevant experiments in more detail, and comment on various limitations

and extensions of the model. Section V summarizes our results and concludes the paper.
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II. OVERVIEW

A. Model Assumptions

We consider a uniformly thick ultrathin magnetic film adsorbed onto a vicinal non-

magnetic substrate. By flat, we mean that the film has no island structure, e.g. a film grown

in step flow mode. [22] By ultrathin, we mean that there is no significant variation in the

magnetization density in the direction perpendicular to the plane of the substrate terraces.

By vicinal, we mean a sequence of flat terraces of length L separated by monoatomic height

steps. We assume perfectly straight steps so that the spin configuration is a function only

of the spatial coordinate perpendicular to the steps. The problem is thereby reduced to a

one-dimensional classical spin chain with ferromagnetic exchange J .

The total surface anisotropy from all sources is presumed to compel the spins to lie in

the plane of the substrate terraces. To model surfaces with cubic symmetry, we assign a

four-fold anisotropy with strength K4 to every site of the chain and a two-fold anisotropy

with strength K2 to every step site. The sign of K4 is chosen to favor spin orientations

parallel and perpendicular to the steps. [23] If the sign of K2 favors spin orientation parallel

(perpendicular) the steps, we apply the external field H perpendicular (parallel) to the

steps. These cases are identical by symmetry. Magnetostatics contributes to the total

surface anisotropy that compels the spins to lie in-plane. For this model, with in-plane

spins, magnetostatics is not treated explicitly because its additional effects are known to be

negligible in the ultrathin limit. [24] Figure 1 is a schematic representation of the physical

situation and the spin chain model studied here.

For simplicity, we choose units where the lattice constant a is one and J , K4, K2, and

H, all have units of energy. To recover dimensional units as used in [8], divide K4 and K2

by a2, and divide H by µ, where µ is the atomic magnetic moment.
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B. The Phase Diagram

We organize our discussion of hysteresis in this system around a “phase” diagram (Figure

2) whose axes are a scaled step anisotropy strength K = K2/2σ and a scaled terrace length

L = L/W where K2 is the step anisotropy energy, σ =
√

2JK4 is the domain wall energy,

and W =
√
J/2K4 is the exchange length. The solid lines delineate four distinct hysteresis

loop topologies. The dashed lines divide Phase II into three sub-variants.

Figure 3 illustrates representative hysteresis loops in each phase. Since all the loops are

symmetric with respect to the sign of H, it will be convenient to restrict discussion to the

situation where the field changes from positive to negative. We define three characteristic

values of the external field. The first deviation of the magnetization from saturation occurs

at the nucleation field HN. A jump in magnetization that initiates at the steps is denoted

HS. A magnetization jump that initiates on the terraces is denoted −HT. HS = HN in

Phases IIc, III & IV.

In phase I, all spins rotate continuously from the saturation direction to the reversed

direction as the external magnetic field is reversed adiabatically. Near the left hand side of

the phase diagram, the spins rotate nearly coherently as a single unit. This is called Stoner-

Wohlfarth behavior. [11] But near the right hand boundary of the Phase I field, the spins

near the step edge rotate more (per unit change in external field) than do the spins near

the center of the terrace. There is no hysteresis, i.e., no jumps appear in the magnetization

curve, merely more or less spatially inhomogeneous spin rotation.

In Phase IIa, spins within an exchange length of a step rotate away from the saturation

direction at HN in response to the torque applied by the step anisotropy. A domain wall

thus forms between the step spins and the remaining terrace spins. A field-dependent energy

barrier ∆DW separates this configuration from a configuration where all spins point nearly

90◦ from the saturation direction. ∆DW → 0 at HS and the domain walls “depin” from the

steps and sweep across the terraces. The accompanying jump in magnetization is followed

by a continuous segment of the hysteresis curve that passes through the origin. This is an
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SW-like regime of nearly coherent spin rotation. During this rotation, an energy barrier ∆SW

separates the terrace spin configuration from the nearly reversed state. At H = −HT, ∆SW

disappears for the terrace spins farthest from the steps and a second jump in magnetization

occurs. Reversal completes at −HN when the step spins finally complete their rotation.

Phase IIb differs from Phase IIa because HT > HN and the final jump in magnetization

carries the system directly to the saturated reversed state. The phase boundary is the locus

of points where HT = HN. Note that there is a small range of K where one encounters the

phase sequence IIa → IIb → IIa as L decreases from large values.

Phase IIc mostly occupies a portion of the phase diagram where KL < 1. Is this regime,

the independent domain wall description used above is no longer appropriate because the

walls have overlapped to the point where the magnetization inhomogeneity across each

terrace is not large. The reversal is better described as nearly coherent rotation, as above,

where the degree of rotation differs for spins near and far from the steps. On the other hand,

a thin sliver of the IIc phase field extends to very large values of L where the independent

domain wall picture remains valid. This shows that there is no rigid correspondence between

phases and reversal mechanisms. More typically, as in this case, there is a smooth crossover

from a domain wall picture to a coherent rotation picture.

Phase III occupies the smallest portion of the phase diagram. The step anisotropy here is

sufficiently small that a negative field is needed to nucleate reversal. Otherwise, the reversal

mechanism is identical to Phase IIc.

Phase IV is characterized byHN < −HT so that only a single magnetization jump occurs.

In fact, HN is so negative that the state with terrace spins nearly parallel to the step is not

stable as it was in Phase III. During the jump, the degree of spatial homogeneity of the

spin rotation is dictated by the magnitude of KL. Nearly coherent SW reversal occurs when

KL � 1 while rotation initiates at the step when KL � 1.
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C. Relevant Experiments

Two recent experimental studies of magnetization reversal in thin iron films deposited

onto vicinal and (nominally) flat surfaces can be interpreted with our phase diagram. Chen

and Erskine [19] studied ultrathin Fe/W(001) where the step anisotropy favors magnetic

moment alignment perpendicular to the step. Their results for an external magnetic field

aligned parallel to the steps can be compared with our results by symmetry. They observe

loops characteristic of Phase III and Phase II for the samples they label “smooth” and

“stepped” for 1.5 ML iron coverage.

Kawakami et al. [21] presented a sequence of four hysteresis loops for the Fe/Ag(001)

system that we interpret similarly as a transition from Phase III to Phase II. In this case,

the step anisotropy favors magnetic moment alignment parallel to the step and the data

they present for the external field aligned perpendicular to the step is relevant. More details

of this comparison can be found in the Discussion section.

III. QUANTITATIVE ANALYSIS

A. General Results

In the continuum limit, the model assumptions stated at the beginning of section II lead

us to the following expression for the magnetic energy per unit length of step for an ultrathin

film on a vicinal surface:

E =
∫
dx

[
1

2
J

(
dθ

dx

)2

−
1

2
K4 cos 4θ −H cos θ

+
1

2
K2

∑
S

δ(x− xS) cos 2θ
]
. (1)

We remind the reader that J , K4, K2, and H all have units of energy. The lattice constant

is unity so the integration variable x is dimensionless. The function θ(x) is the angular

deviation of the magnetization density from the field direction at point x. For definiteness,

we take the latter to be perpendicular to the steps and pointing down the vicinal staircase
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of Figure 1. Note that the two-fold anisotropy acts only on step edge spins at the discrete

positions xS.

We seek spin configurations θ(x) that correspond to local minima of (1). In general, an

energy minimum moves smoothly in configuration space as H changes and the correspond-

ing spin configuration and magnetization change smoothly as well. Apart from accidental

degeneracies, the only exception to this behavior occurs when the energy minimum evolves

to a saddle point. At that point, the spin configuration changes discontinuously, a new

energy minimum is adopted, and a jump appears in the magnetization curve. Our goal is to

calculate the field values where these jumps occur. Their number and sign distinguish the

phases of the system.

The Euler-Lagrange equation that determines the extremal configurations of (1) is [25]

J
d2θ

dx2
= H sin θ + 2K4 sin 4θ −

∑
S

δ(x− xS)K2 sin 2θ. (2)

We seek solutions of this equation with the same periodicity as the steps. These solutions

are parameterized by two constants, the spin angle at the center of each terrace θT and

the spin angle at each step θS. One equation that relates these two is obtained as follows.

Place the origin x = 0 at a step, multiply (2) by dθ/dx, and integrate from the center of the

terrace (x = −L/2) to an arbitrary point x on the same terrace. The result is

H cos θT +
1

2
K4 cos 4θT =

1

2
J
(dθ
dx

)2

+ H cos θ +
1

2
K4 cos 4θ (3)

using the fact that dθ/dx = 0 at the center of the terrace.

The constant θS appears when we evaluate (3) at a step. For this purpose, integrate (2)

from x = 0− to x = 0+ and use reflection symmetry across the step, i.e.,

dθ

dx

∣∣∣∣
0+

= −
dθ

dx

∣∣∣∣
0−
, (4)

to get

2J
dθ

dx

∣∣∣∣
0−

= K2 sin 2θS. (5)
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Substitution into (3) yields

K2 sin2 2θS = H(cos θT − cos θS)

+ (cos 4θT − cos 4θS)/2 (6)

which relates θT and θS as desired. The scaled magnetic field H = H/K4.

A second relation between θT and θS can be found that involves the terrace length

explicitly by integrating (3) from the center of a terrace to the step edge:

L = 2
∫ θS

θT

dθ√
[H(cos θT − cos θ) + (cos 4θT − cos 4θ)/2]

(7)

The analysis to this point is completely general and forms the basis for all the approxi-

mate analytic and numerical results that follow. We begin our discussion with two special

situations that can be treated in full analytically: the single domain limit and the single

step limit.

B. The Single Domain limit

This section focuses on the bottom left corner of the phase diagram where LK � 1. This

is the Stoner-Wohlfarth limit where only a single homogeneous magnetic domain is present.

The energy per terrace per unit length of step Ẽ = E/L is

Ẽ = −
1

2
K4 cos 4θ +

1

2
K̃2 cos 2θ −H cos θ, (8)

where the value of the effective two-fold anisotropy K̃2 = K2/L, as can be verified by

substitution of a uniform spin configuration θ(x) = θ into (1).

In terms of the magnetization M = cos θ, we seek the stationary points of the quartic

expression

Ẽ = −K4(2M
2 − 1)2 + K̃2M

2 −HM, (9)

i.e, the solutions of
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dẼ

dθ
= sin θ [H − H̃(M)] = 0. (10)

where

H̃(M) = (2K̃2 + 8K4)M − 16K4M
3. (11)

The extremal condition is satisfied trivially when the magnetization is parallel or antiparallel

to the field direction where sin θ = 0. But it is also satisfied by the cubic equation H =

H̃(M). In either case, we must have

d2Ẽ

dθ2
= cos θ [H − H̃(M)] + sin2 θ

dH̃(M)

dM
> 0 (12)

to guarantee that the solution is a local minimum of the energy.

The first term on the right hand side of (12) determines the extremal properties of the

sin θ = 0 solutions. The θ = 0 solution is a local minimum for H > H0
N where

H0
N = H0

S = 2K̃2 − 8K4 (13)

is the limiting value of the nucleation field when LK � 1. Notice that portions of Phases

I, IIc, III, and IV appear in this limit where the nucleation field H0
N and the first jump

field H0
S are coincident. The θ = π solution is a local minimum for H < −H0

N. At finite

temperature, spin configurations at local minima of the free energy become metastable since

thermal fluctuations can excite the system over energy barriers to a lower energy minimum.

These fluctuations decrease the area of hysteresis loops. [26]. For example, as the nucleation

field is approached from above, the energy barrier to the unsaturated state goes to zero as

∆Ẽ = (H −H0
N)2

(
−2

d2Ẽ

dM2
N

)−1

(H −H0
N)2(80K4 − 4K̃2)

−1 (14)

where d2Ẽ/dM2
N is evaluated at the saturation magnetization MN = 1. At finite tempera-

tures a hysteretic jump can occur due to thermal fluctuations when ∆E is of the order kBT .

Therefore H0
N is a lower bound for the jump field. The actual jump field will be larger than

this by an amount
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∆H0
N ∝

√
(80K4 − 4K2)kBT . (15)

The second term on the right hand side of (12) determines the extremal properties of

the H = H̃(M) solutions. Because the coefficient of the cubic term is negative, at most one

of the three solutions to the cubic equation satisfies dH̃(M)/dM > 0. This means that the

magnetization increases (decreases) when the field increases (decreases)–a condition that is

met when |H| < |H0
T| where

H0
T =

8
√

6

9
K4(1 +

K̃2

4K4

)5/2 (16)

is the limiting value of the jump field when LK � 1. This is true unless K̃2 > 20K4 in which

case the H = H̃ solution is stable for all values of M and there are no magnetization jumps

for any value of external field. When K̃2 + 8K4 < 0, the H = H̃(M) solution is never stable

and the sin θ = 0 solutions are the only local minima. As the jump field is approached from

below, the energy barrier to the saturated state goes to zero as

∆Ẽ =
2

3
(H0

T −H)3/2

(
−

1

8

d3Ẽ

dM3
T

)−1/2

=
2

3
(H0

T −H)3/2
(
3K4(2K̃2 + 8K4)

)−1/4
(17)

where d3Ẽ/dM3
T is evaluated at

MT =
√

(2K̃2 + 8K4)/48K4, (18)

the zero temperature magnetization at H = H0
T. At finite temperature the jump field is

smaller than H0
T by an amount

∆H0
T ∝

((
3

2
kBT

)2√
3K4(2K2 + 8K4)

)1/3

. (19)

Away from the single domain limit the qualitative effects of finite temperature are the same

but are more difficult to treat analytically.

The above results can be applied to find analytic formulae for the three phase boundaries

in the lower left corner of the phase diagram. The system is in phase I when K̃2 > 20K4
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since, as noted, the magnetization curve has no jumps. The remanent slope is dM/dH =

1/(2K̃2 + 8K4). For 20K4 > K̃2 > 4K4, the system is in phase IIc. The remanent slope is

dM/dH = 1/(2K̃2 +8K4). For 4K4 > K̃2 > 2K4 the system is in phase III. Phase IV occurs

when 2K4 > K̃2. Using these results and K̃2 = K2/L, the boundaries between the phases

near the origin are: K = 5L between phases I and IIc, K = L between phases IIc and III,

and K = 1
2
L between phases III and IV.

C. The Single Step limit

The right edge of the phase diagram where L → ∞ is the limit where the step separation

is large compared to the exchange length and the (somewhat larger) domain wall width. In

that case, it is sufficient to study the case of a single step bounded by semi-infinite terraces

on each side. Our goal again is to calculate the nucleation field HN and the jump fields HS

and HT. We do this by focusing attention on the spin at the step where θ = θS and the

spins at ±∞ where we assume that θ approaches the constant value θT.

The fact that θ(x) → θT as x → ±∞ implies that all spatial derivatives of θ(x) vanish

at infinity. Applying this to (2) yields

H sin θT + 2K4 sin 4θT = 0 (20)

which determines θT. To find θS, we need only note that the θT = 0 solution to (20) is valid

for large values of the external field. We therefore substitute this value into (6) to find

1

2
(K2 − 1) sin2 2θS = H sin2 1

2
θS. (21)

The identification

H∞N = 8K4(K
2 − 1). (22)

follows immediately since, by definition, θS is very small near nucleation. Substitution of

(22) into (21) gives
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H = H∞N cos2 θS cos2 1
2
θS (23)

which is valid so long as θT = 0 and H < |H∞N |.

The case H∞N > 0 is relevant to Phases IIa and IIb where H∞S is distinct from H∞N . In

particular, the step angle θS increases smoothly as H decreases until the latter reaches

H∞S = 0 (24)

when a magnetization jump occurs because (23) has no solutions for H < 0. The spin

configuration just before the jump is precisely that of a 90◦ domain wall because θS = π/2

and θT = 0. As noted in Section II, the jump occurs because the domain wall depins from

the step and sweeps across the terrace so that final state has θ(x) = π/2 and M = 0. An

explicit formula for H∞T can be found by noting that this jump initiates with the terraces

spins at ±∞. These obey the pure Stoner-Wohlfarth dynamics of Section II.B with K̃2 = 0.

In particular, (20) is identical to (10). The final magnetization jump thus occurs at −H∞T

where

H∞T =
8
√

6

9
K4. (25)

This value is a lower bound for the jump field when the terrace length is finite because the

presence of nearby steps retards the final transition to the reversed state.

The case H∞N < 0 applies to Phases III and IV. The above discussion shows that at

nucleation in Phase III, the saturated state jumps immediately to the spin configuration

that satisfies (20) with θT 6= 0. This state evolves smoothly until the magnetization jump at

−H∞T . In Phase IV, there is only a single jump because now (20) has stable solutions only

at θ = 0 and θ = π when H = H∞N .

The boundaries between the various phases in the limit L →∞ can be found quite simply.

The IIa-IIb boundary is the locus of points where HT = HN. From (22) and (25) we get

K = (1 +
√

6
9

)1/2 ≈ 1.13. The IIb-III boundary occurs when HN = 0, i.e., K = 1. The III-IV

phase boundary is the locus of points where HN = −HT. This gives K = (1−
√

6
9

)1/2 ≈ 0.85.
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D. Other Analytic Results

This section presents three analytic results that pertain to interior portions of the phase

diagram. The first is an implicit expression for the nucleation field at any point in the phase

diagram. The second is an exact expression for the entire boundary between Phase IIc and

Phase III. The third is the leading correction to the Phase II jump field H∞S when the terrace

length is finite.

For the nucleation field, our interest is the first deviation of the spin configuration from

θ(x) ≡ 0. We thus expand (2) to first order in θ:

J
d2θ

dx2
= (H + 8K4)θ − δ(x)2K2θ. (26)

Without the delta function, the appropriate solution to (26) is

θ = A cosh(
√

(H + 8K4)/Jx) (27)

where A is a constant. Similarly linearizing the boundary condition (5) gives

2J
dθ

dx

∣∣∣∣
L/2

= −2J
dθ

dx

∣∣∣∣
−L/2

= 2K2θS. (28)

Combining these results yields the implicit formula

−2K2 + 2
√
J(HN + 8K4) tanh

L
2

√
HN + 8K4

J

 = 0. (29)

for the nucleation field HN. We obtain a more compact form by defining a shifted and scaled

nucleation field H̃N from

HN(K2, K4, J, L) = −8K4 + 8K4H̃N(K,L). (30)

and substituting (30) into (29). The final result

K = H̃
1/2
N tanh

(
LH̃1/2

N

)
. (31)

gives the nucleation field at any point in the phase diagram. Note the limiting forms H̃N =

K/L for KL → 0 and H̃N = K2 for KL → ∞. These are the Stoner-Wohlfarth and single
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step results obtained earlier. The line KL = 1 can be regarded as a crossover between the

two. We return to this point in Section IV.

The IIc-III phase boundary is defined by HN = 0, i.e., H̃N = 1. Substitution of this into

(31) gives

K = tanh(L) (32)

which is the equation of the phase boundary drawn in Figure 2.

We turn finally to a calculation of the jump field HS in Phase II for large but finite

terrace lengths. In this limit, the domain wall depinning picture of the jump is appropriate.

The calculation is analogous to the computation in Section III.C except that the single step

formula (20) is replaced by a more general relation between θS and θT obtained from a

variational form for the spin configuration near HS.

Just below (24), we observed that the single-step spin configuration θ(x) just before the

magnetization jump at H∞S takes the form of a 90◦ domain wall. That is,

tan θ = e±λx (33)

where λ =
√

8K4/J . Since θS ' π/2 at every step, an appropriate trial function for a

multi-step system is obtained by adding together the ± wall configurations from (33) in the

form

tan θ = tan θT cosh λx, (34)

which becomes

tan θS = tan θT coshL (35)

at each step. Expanding (35) for large L and small ε = π/2− θS and θT gives

ε =
1

2θT

e−L. (36)

Performing a similar expansion on (6) and retaining terms to lowest order in H only yields
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H =
2

θ2
T

H∞N e
−2L + 4K4θ

2
T (37)

when (36) is used. The jump field

HS = 2
√

8K4H
∞
N e
−L (38)

is the smallest value of H for which solutions to (37) exist for some value of θT.

E. Numerical Results

Numerical methods were used to study three aspects of this problem: (i) calculation of the

hysteresis loops; (ii) determination of the L dependence of the jump fields for representative

values of K; and (iii) determination of the phase boundaries in the phase diagram.

The hysteresis loops in Figure 3 were computed directly from (1). For each choice of

control parameters, the evolution of the stable energy minimum was followed by a combi-

nation of conjugate gradient (CG) minimization and spin relaxation dynamics. The initial

state was chosen as the saturated state and the external field was reversed in small steps

from a large positive value to a large negative value. The CG method reliably follows the

adiabatic minimum until a magnetization jump occurs. But when a jump connects local

energy minima that are far separated in configuration space, the CG scheme often predicts

an obviously incorrect final state. To correct this, CG was used consistently except in the

immediate vicinity of a jump. When it predicted a jump, the simulation was backed up and

spin relaxation dynamics used to find the correct final state.

The nucleation field is found readily numerically from the general formula (29). A more

elaborate procedure is needed to find the jump fields. Jumps in magnetization correspond

to discontinuous changes in the spin configuration. In particular, ∂θT/∂H diverges at both

HS and HT. But since L is a constant for a given physical situation, it must be the case

that

dL

dH
=
∂L

∂H
+
∂L

∂θT

∂θT

∂H
= 0. (39)
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In this equation, L is regarded as a function of θT and H only since θS is a function of θT and

H from (6). We conclude that there is a one-to-one correspondence between the divergences

of ∂θT/∂H and the zeros of ∂L/∂θT.

The argument above directs us to find L(θT) for any desired choice of K and H. Once

this choice is made, we sample many values of θT in the interval 0 ≤ θT ≤ π/2. For each

θT, we solve (6) for θS and integrate (7) to get L. Figure 4 shows L(θT) for K=1.25 and

H=2, 3, 4, 6, 9. The value ofH decreases monotonically as the sequence of curves is traversed

from bottom to top. All the curves approach either L = ∞ as θT → 0 or possess a semi-

infinite vertical segment at θT = 0 that begins at the point where the curve hits the left L

axis.

We now argue that the horizontal dashed line labeled LS that is tangent to the local

minimum of one of the displayed curves defines the physical terrace width for which the

corresponding value of H is exactly HS. HS is encountered by reducing the field from large

positive values where the spin configuration is saturated. The intersection of the line LS

with the vertical portion of the curves for large H confirms that θT = 0 at saturation. As H

decreases, the corresponding curves eventually intersect the line LS at small non-zero values

of θT. Finally, the intersection occurs at the local minimum of one of the curves. This is the

curve of HS because any further reduction in field leads to a discontinuous change in θT to

the only remaining intersection point on the rightmost segment of the L(θT) curves.

The horizontal dashed line labeled LT that is tangent to the local maximum of one of the

curves defines the physical terrace width for which the corresponding value of H is exactly

HT. But since Fig. 4 is drawn for H > 0 only, the jump at HT is encountered by increasing

the external field from H = 0 where M = 0 [27]. The intersection of the line LT with

the lowest field curve shown confirms that θT ' π/2. As H increases, the curves develop

a local maximum and the intersection eventually occurs at this point. This is the curve of

HT because any further increase in field leads to a discontinuous change in θT to the only

remaining intersection point on the leftmost segment of the L(θT) curves.

The evolution of the nucleation and jumps fields as a function of L found as described
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above is illustrated in Figure 5 for K = 1.25. Figure 6(a) confirms the exponential depen-

dence of HS on L predicted in (38). Figure 6(b) shows that HT ∼ Lχ for the last decade of

data shown where χ ' 3.7.

The relative values of HN, HT, HS were used to construct all the phase boundaries shown

in Figure 2. Figure 5 is germane to the I-IIa phase boundary. No jump fields exist for L < L∗

and HN > HT > HS for L > L∗. This is the same terrace length shown in Figure 4 where

the dashed line L = L∗ intersects the curve of L(θT) for which the extrema (and hence the

jump fields) first disappear. The I-IIa phase boundary is asymptotically vertical as K →∞.

The limiting value of L∗∞ is found from the same procedure as above by putting θS = π/2

in (7). The result is L∗∞ ≈ 2.2072.

Figure 7 shows the L dependence of the nucleation and jump fields for K = 0.5. The

absence of the jump fields defines the range of Phase I as before. The other phases exhibit

the relative orderings of the characteristic fields discussed in Section II, i.e.,. HN = 0 defines

the IIc-III boundary and HT = −HN defines the III-IV boundary. Figure 8 shows the

nucleation and jump fields for K = 1.17. The re-entrant behavior IIa→ IIb→ IIa described

in Section II arises because the curves of HT and HN intersect twice. The transition from

IIa to IIb at fixed L is readily understood. HT is nearly independent of K because it is

related to terrace spin behavior far from the steps. But HN decreases rapidly as K decreases

because the torque on step spins is reduced. Eventually, HN drops below HT for all values

of L. We omit a figure that shows the IIc-IIb phase boundary (HS = HN) explicitly.

We note finally that there is a critical point in the phase diagram (KC ,LC) where HT,

HS, and HN are coincident. This is the point in Figure 2 where the I-IIa, IIa-IIb, IIb-IIc,

and IIc-I phase boundaries all meet. Our best estimate is KC ≈ 1.10 and LC ≈ 0.56.
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IV. DISCUSSION

A. The Reversal Mechanism

An important conclusion from our analysis is that a distinct hysteresis loop topology does

not imply a distinct mechanism of magnetization reversal. This is immediately clear from

Figure 2 where all four phases are present in the LK � 1 limit of nearly coherent rotation

and three of the four phases are present in the limit of widely separated steps where reversal

occurs by domain wall depinning. No sharp transition separates these cases. Instead the

reversal mechanism smoothly crosses over from coherent rotation to domain wall depinning

as the terrace length or step anisotropy is increased.

The crossover is most easily understood for the case of nucleation which, as noted, always

occurs at the steps due to the torque exerted on the saturated state by the local two-fold

anisotropy. When LK � 1, nucleation results in the formation of a domain of rotated spins

around each step separated from the unrotated terrace spins by a domain wall. Now suppose

that L is reduced, say, by increasing the vicinality of the substrate. The spins on the terrace

rotate away from saturation when the domain walls begin to overlap. In the limit when

L � K−1, their rotation becomes indistinguishable from the rotation of the step spins and

the coherent rotation picture is a good approximation to nucleation. Alternately, suppose

that K is reduced, say, by increasing the film thickness or by adsorbing foreign gases onto

the steps. This reduces the torque on the step spins so that their angular deviation from the

terrace spins is not as great. In the limit when K � L−1, this difference nearly disappears

and the coherent rotation picture is again appropriate.

We turn next the first jump field HS. Coburn and co-workers [28] have presented a model

of reversal for ultrathin magnetic films with in-plane magnetization and four-fold anisotropy.

They assume that the film is well described by a single homogeneous domain before and

after every jump in the hysteresis curve. Domain walls are presumed to nucleate at widely

separated surface steps or other defects. Magnetization jumps occur when the energy density
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gain to make the transition ∆E is equal to a phenomenological energy density ε needed to

depin the wall from the most effective pin in the film.

This description approximately reproduces our results when L is large if we take account

of the inhomogeneous spin configuration induced by the steps. In Section II,HS was defined

as the field when the energy barrier ∆DW vanished. Here, ∆DW = ε−∆E where

∆E ' −H/a+ 2σ/L+ (A/L)e−L (40)

and A is a constant with dimensions of energy. The first term is the Zeeman energy gain

of the saturated state compared to the 90◦ state. The second term is the energy cost of

the domain walls near the two steps that bound a terrace. The last term represents an

effective repulsive interaction between neighboring walls that arises from the overlap of

domain walls. The terrace spins in the overlap region pay anisotropy energy, and the energy

of the initial state rises compared to the single step case. The exponential dependence

on wall separation is familiar from other problems where periodic domains form, e.g, the

commensurate-incommensurate transition. [29]

The condition ∆DW = 0 yields the estimate

HS ' 2σ/L− ε+ (A/L)e−L. (41)

This agrees with (38) up to the prefactor of the exponential if ε = 2σ/L. This is not

unreasonable because the barrier for the two domain walls to depin, sweep across their

common terrace, and annihilate is associated with a spin configuration where the two walls

are separated by a distance small compared to L but large compared to the exchange length

W . Of course, ε is not distributed across the terrace in any physical sense. It is associated

solely with the particular spin configuration described just above.

B. Comparison to Experiment

We remarked in Section II.C that the shape of the SMOKE loops obtained by Chen and

Erskine [19] for flat and vicinal ultrathin Fe/W(001) appear (to the eye) to be very similar
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to our Phase III and phase II topologies, respectively. To see that this is not unreasonable,

we combine the 25Å terrace widths reported in Ref. [19] with typical values of the magnetic

parameters J ∼ 10−21 J, K2 ∼ 1 mJ/m2, and K4 ∼ 10−2 mJ/m2 [2] to discover that this

experiment corresponds to L ∼ 1 and K ∼ 1. This is indeed in the vicinity of the II-III

phase boundary.

We assigned the same transition to the data of Kawakami et al. [21] for 25 ML of Fe on

a sequence of surfaces vicinal to Ag(001). This is still nominally an ultrathin film because

the exchange length W =
√
J/2K4 ∼ 20 ML using the values above. In fact, the results of

this experiment lay even closer to the lower left corner of our phase diagram than the Chen

and Erskine experiment because the vicinality is greater.

The authors of Ref. [21] analyzed their data with a single domain model similar to

that of Coburn and co-workers [28] except that the step anisotropy was distributed across

the terraces and the depinning energy ε was set to zero. Such a model actually yields

no hysteresis at all–just a magnetization curve with two symmetrical jumps. Magnetic

parameters were extracted from the experiment by matching this jump to the average of

what we call HS and HT. In our opinion, formulae similar to our (13) and (16) for H0
S and

H0
T should be used to analyze the large vicinality data [30] of Ref. [21].

C. Extensions of the Model

It is easy to think of extensions of the model studied here that would render the results

more directly comparable to experiment. Probably the most stringent assumption we make

is that the magnetic film smoothly coats the vicinal substrate. For relatively small terrace

lengths, this is possible if the deposition is performed at high temperature so that nucleation

of islands on the terraces is suppressed and growth occurs in so-called “step-flow” mode.

[22] Otherwise, it is necessary to take account of the effect of these islands on the hysteresis.

This was the subject of a previous paper by us [8] for a square island geometry and we can

use those results to suggest the effect in the present case.
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For fixed deposition conditions, island nucleation is increasingly probable as the terrace

length increases. [22] For this reason, we focus on the right hand side of the phase diagram.

The magnetization jump at HS will be interrupted because the domain walls depinned

from the vicinal steps will not sweep completely across the terraces. Instead, they will be

repinned by the channels between islands. This introduces additional jump structure into the

hysteresis curves and likely will alter the coercive field significantly. We expect little change

in HT but there will be an extra magnetization jump before final reversal associated with

spins that remain pinned in the original saturation direction at island edges perpendicular

to the vicinal step edges.

The one-dimensional character of our model arises because we assumed perfectly straight

steps. This is not generally the case because the desired step-flow growth mode itself induces

a step-wandering instability. [31] This instability will have the effect of introducing two-

fold anisotropies in a variety of directions and a random anisotropy model (with spatially

correlated randomness) might be a suitable starting point in the limit of large waviness.

Non-uniform terrace widths are another feature of real vicinal surfaces that might also

be treated in a more complete model. The result is easy to guess in the pinned limit where

every terrace acts independently. Otherwise, nucleation and subsequent jumps will occur

first in regions of the film with largest step density and eventually spread to regions of low

step density.

Except for the single domain limit, where energy barriers can be calculated exactly, we

have ignored thermal fluctuations. At low temperatures thermal fluctuation decrease the

area of hysteresis loops. At higher temperatures fluctuations can qualitatively change loop

structure and Monte Carlo methods become appropriate. [26].

Finally, we have ignored both perpendicular variations in the magnetization and all

explicit magnetostatic effects. For a vicinal surface, dipole-dipole coupling actually induces

the spins to lay in the average surface plane of the entire crystal [4] rather than in the

plane of the terraces as we have assumed. When combined with crystallographic surface

anisotropy, this effect induces a two-fold anisotropy parallel to the steps at all terrace sites.
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[21] Such a term is easily included in our basic energy expression (1) and does not appreciably

complicate the analysis.

V. SUMMARY

This work was motivated by the increasing awareness that the step structure of ultra-

thin magnetic films can have a profound effect on magnetic reversal and hysteresis. Our

theoretical study focused on perhaps the simplest case: a film deposited on a vicinal surface

comprised of uniform length terraces separated by monoatomic steps. The magnetization

was assumed to lay in the plane parallel to the terraces and to vary negligibly in the di-

rection perpendicular to the terraces and parallel to the steps. We assumed the presence

of an intrinsic four-fold in-plane anisotropy at every site and a two-fold anisotropy at step

sites only. Explicit magnetostatics was ignored. Attention was directed to the interesting

case where one orients an external field perpendicular to the direction of the two-fold axes.

The final model studied was a one-dimensional, ferromagnetic spin chain in an external field

with spatially inhomogeneous anisotropy.

The analysis was performed in the continuum (micromagnetic) limit where the spin

configuration is represented by a function θ(x) that encodes the angular deviation of the

magnetization from the external field direction. Four characteristic hysteresis loop topologies

were found and designated as “phases” in a two-dimensional diagram labeled by the natural

control parameters of the model: a scaled terrace length L and a scaled step anisotropy

strength K.

The hysteresis loops were characterized by a nucleation field HN, where the magnetization

first deviates from saturation, a step jump field HS where a jump in magnetization occurs

from near saturation to a state where many spins are aligned parallel to the steps, and a

terrace field HT where a jump in magnetization occurs to the nearly reversed state. For

large values of L we found HS ∼ exp(−L) and HT ∼ L−χ with χ ' 3.7.

In all cases, reversal initiates at the steps because the torque applied by the local
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anisotropy is maximal there in the saturated state. No sharp transition separates the cases

of subsequent spin rotation by nearly coherent rotation and subsequent spin rotation by

depinning of a 90◦ domain wall from the steps. It is a crossover phenomenon. The coherent

rotation model of Stoner & Wohlfarth (SW) is most appropriate in the lower left corner

of our phase diagram. The step depinning picture is most appropriate in the upper right

corner of the diagram.

To our knowledge, all existing measurements of the magnetic properties of ultrathin films

on vicinal surfaces have been confined to a relatively small portion of our phase diagram.

We encourage experiments designed to explore the remaining terra incognita.
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FIGURES

Non-magnetic
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FIG. 1. Geometry and anisotropies for a monolayer of magnetic material on a vicinal

non-magnetic substrate. The substrate steps are periodically separated by a distance L. There is

a four-fold anisotropy everywhere on the surface, and a strong two-fold anisotropy localized at the

steps.

29



FIG. 2. Loop structure phase diagram. The independent variables are a scaled two-fold

anisotropy strength at the step, K and a scaled step separation L. Roman numerals label four

distinct loop topologies. Lower case letters label three variants of Phase II. The vertical and hori-

zontal arrows respectively show the K →∞ and L →∞ limits of the nearby phase boundaries.
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FIG. 3. Hysteresis loops. The type of hysteresis loop in different parts of the phase diagram,

(see Fig. 2). The scaled parameters for each loop are: I, K = 1.25, L = 0.5; IIa, K = 1.25, L = 2.0;

IIb, K = 1.1, L = 2.0; IIc, K = 0.5, L = 0.25; III, K = 0.5, L = 0.75; IV, K = 0.5, L = 2.0.
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FIG. 4. Scaled terrace width L as a function of terrace spin angle θT for K= 1.25 and H=

2, 3, 4, 6, 9. The value of H decreases monotonically as the sequence of curves is traversed from

bottom to top. The horizontal dashed lines labeled L∗,LS, and LT are discussed in the text.
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FIG. 5. Characteristic fields for K = 1.25. The vertical dashed line L = L∗ is the I-IIa phase

boundary. See text for discussion.
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FIG. 6. Asymptotic behavior of the fields HS and HT−H∞T for large L. Note that H∞S = 0.(a)

Log-linear plot. (b) Log-Log plot. Straight line has a slope of -3.7
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FIG. 7. Characteristic fields for K = 0.5. Vertical dashed lines denote phase boundaries. See

text for discussion.

35



FIG. 8. Characteristic fields for K = 1.17. Vertical dashed lines denote phase boundaries. See

text for discussion.
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