Diffraction effects on broadband radiation:
formulation for computing total irradiance
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I present a formulation for treating diffraction effects on total irradiance in the case of a Planck source;
earlier work generally depended on calculating diffraction effects on spectral irradiance followed by
summation over spectral components. The formulation is derived and demonstrated for Fraunhofer
diffraction by circular apertures, rectangular apertures and slits, and Fresnel diffraction by circular
apertures. The prospects for treating other sources and optical systems are also discussed. © 2004
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1. Introduction

Diffraction of electromagnetic radiation at the edges
of apertures and lenses leads to losses or gains of flux
in radiometry that are not accounted for in geomet-
rical optics. Furthermore, practical radiometry of-
ten relies on intrinsically broadband sources:
Planck-like sources, such as stars, idealized labora-
tory blackbodies, other, imperfect blackbody radia-
tors that are frequently encountered in nature and
laboratory environments, and synchrotrons. For
such sources, assessing diffraction effects on the
position-dependent total irradiance of one’s detector
requires summation over spectral components, each
of which is affected differently by diffraction.
Traditionally, diffraction theory is formulated for
monochromatic radiation. Thus, diffraction effects
have been treated by first considering the spectral ir-
radiance at various wavelengths and subsequently
summing this quantity over wavelength. Diffraction
effects on spectral irradiance are traditionally com-
puted in some version of the Kirchhoff method, which
solves the wave equation approximately by Green’s
function techniques.! This can lead to cumbersome
integrals with highly oscillatory integrands. Even af-
ter such integration, the diffraction effects on spectral
irradiance can oscillate with wavelength \, so that care
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might be needed when one is summing over wave-
length in order to obtain the total irradiance.

Because of the above difficulties, this work circum-
vents such a two-step process as follows. The
squared Kirchhoffintegral is rewritten as the Fourier
transform of the autoconvolution of the distribution
of total path length that light can travel from source
to detector, such that path-length differences are as-
sociated with a wavelength-dependent complex
phase shift when a wave interferes with itself. The
then-trivial integration over wavelength (or angular
wave number) weighted by source spectral radiance
is carried out, which removes almost all oscillatory
behavior of subsequent integrands and so simplifies
their integration. Simplified integrals over total
path length or path-length differences are then more
easily evaluated. In this way this work also natu-
rally treats and includes all spectral components out-
put by a broadband source simultaneously and takes
advantage of the common spatial aspects of light
propagation that are wavelength invariant.

The present work only considers Planck sources,
for which spatial and spectral properties of radiance
are decoupled. That is, the spectral radiance L, (A,
T,, r,, Q) (power emitted per unit wavelength per
steradian per projected unit area of source) may be
expressed as the product of one factor that describes
its spatial properties and one factor that describes its
spectral properties:

L}\()\a Ts; rg Q) = fl(rs’ ‘0’) f2()\7 Ts)~ (1)
Here \ is the wavelength, T, is the source tempera-

ture (assumed to be the same value everywhere), r, is
a point on the source, and () is the emission direction.
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For a Lambertian source, the radiance does not depend
on (). Furthermore, for the sources we consider, the
radiance does not depend on r,, except in that fl(r Q)
has one value everywhere on the area of an extended
source and is zero elsewhere. However, if fi(r,, 0)
were to vary as a function of r, and (), the salient
aspects of this work would remain valid. It remains
to be seen whether this work could be adapted for
similar analysis involving synchrotron radiation.

This work considers a broad class of optical setups,
regarding how diffraction affects the relationship be-
tween the source temperature T, and irradiance at a
point r, in the detector plane, E(r,, T), which is the
power incident per unit area. The dependence of
E(r,, T,) on T is interwoven with its dependence on
the location of r; and on the geometrical aspects of all
optics between and including the source and detector,
which affect propagation of light because of
geometrical-optics effects and diffraction effects.
Note that geometrical optics describes the propaga-
tion of light in a manner that is independent of wave-
length N\, whereas the spectral dependence of
diffraction effects precludes separating the depen-
dences of E(ry, T,) on r; and on T',.

The most well-known diffraction problems include
Fraunhofer diffraction by rectangular apertures and
slits and circular apertures and Fresnel diffraction by
circular apertures.2 In Section 3 of this work the
diffraction effects for these well-known problems are
analyzed in particular. Concluding remarks and a
technical appendix follow.

2. Formulation

For simplicity, all that follows will rely on the scalar
Fresnel-Kirchhoff treatment of diffraction in the
paraxial (Gaussian optics) approximation.? This
treatment is limited, because it can fail to describe
polarization effects and various aberrations, includ-
ing the focal shift.# However, the analogous treat-
ment of geometrical optics leads to extremely simple
approximate expressions for the throughput of opti-
cal systems, and the small-wavelength behavior of
paraxial Fresnel-Kirchhoff results approaches this
limit. Therefore the difference between a paraxial
Fresnel-Kirchhoff result and its geometrical-optics
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Fig. 1. Canonical optical arrangement considered in this work.

Light emitted from an extended source passes by N optical ele-
ments before reaching a detector. The optical axis is assumed to
be the z axis. Ap., aperture.

2610 APPLIED OPTICS / Vol. 43, No. 13 / 1 May 2004

counterpart can often provide a reasonable assess-
ment of diffraction effects on the behavior of an opti-
cal system.

Consider the general system shown in Fig. 1. The
z axis is the optical axis, withx =y = 0. The source,
N apertures (or lenses), and the detector are posi-
tioned along that axis. Radiation emitted at r, can
propagate to r; by passing by all N intermediate
optical elements. If one spectral component origi-
nates at r, as a spherical wave of the form u(r) = u,
exp(ik|r — r,|)/|r — r,|, where £ = 2m/\ is the angular
wave number, the approximation used provides a
prescription for evaluating the resulting wave field at
ry, u(k, ry, ry):

u(k, r, ry) ~ .uONJ. d?r,. . .d%ry

(l)\) Apl. . . ApN

X G(k: r, rl)' . ~G(k’ ry, rd)

X exp[ik3L({r,})], (2)

where
k
Gk, 1, x,) = “PURIE 1D
|ru I‘,,|

1
~ ( )exp{ik{zv -z,
2,2,

+ (xv_xM)Z_’_ (yv_yu)2:|] (3)

2(2 v Zp,)
is the k-dependent free-space propagator or Green’s
function for the wave field between two points. Here
a point’s Cartesian coordinates are denoted r,, = x,%X
+y.¥ +2,2. Also, we always assume z, > z, and
that the difference in z coordinates is much larger
than the differences in x or y coordinates. The factor

exp[ik3L({r})] = exp[ik > (— W) 4)

p=1 2fu

can be used to introduce a finite focal length f, that
can convert an aperture into a focusing optic. Cor-
respondingly, an aperture effectively has |f,| =
Integration of r,, is understood to run over the area of
optical clement | .. Also, note that the units of u(k,
r,, r;) and u, differ, because the units of u, have an
additional factor of length.

Let us now introduce the abbreviations

L({ru}) =2q 7 25
(xl - xs)2 + (yl _ys)2 +

2(21 - Zs)
(xg —x3)> + (ya —yn)°
2(zq — 2n)
+ 3L({r,}), (5)



which (approximately) is a path length from r, to r,
sampled in Eq. (2), and

= (21— 2)(22—21). . (24 — 2n). (6)

We also define

f(ly r, rd) = J\ d2r1' . Jl dQI‘NS[Z - L(|r;x})]7 (7)
Apl ApN

which describes the frequency of occurrence of a path
length equal to / in Eq. (2). This gives

w(k, 1, 1) =ﬁ f " dUf (L, x, roexplikl), ()

which involves the Fourier transform of f(/, r,, r;)
with respect to [. Squaring yields

|u(k7 r57 rd)|2 =

2 » Y
j le. dl'f(l, r,, ry)

X fl', vy, ryexplik(l —1")], (9)

which involves the Fourier transform of the autocon-
volution of f(l, r,, r;), all with respect tol. Finally,
the ratio |u(k, r,, r;)/uy|” is given by the function

T(k’ r, rd) = |u(k> r, rd)/u0|2

kZN
(2 )ZNAZ
Xf(l', x, roexplik(l —1')]

f dl f d'F(L v, 1))

k2N72 - * ,df(l’ r, rd)
(2m)PA? Ldl f d dz
ll} S .
X W exp[ik(l —1")]. (10)

In many cases there is a limit,

TO(r37 rd) = }elng T(k5 r, rd)|Illum' (11)

If this limit exists, it appears to be the geometrical-
optics counterpart of T'(k, r,, r;) in the illuminated
region of the z = z; plane. As an example, consider
the case of one optical element between the source
and detector. In such a case, we may abbreviate
21— 2,=d,andz; —z; =d,; Ifthe optical element
is nonfocusing, we have Ty(r,, r,) = (d; + d,) 2. If
the optical element is a lens with focal length f, we

have
! ! i - 1 - (12)
d2dd d dd fl -

At |f] = », we have the previous result, and we have
the result Ty = d.? for d; — 0, 1ndependent of f.
Otherwise, T (r,, rd) varies in size as the area of the
illuminated region varies inversely as a function of
d,;. Near the focal plane, T(r,, r,;) diverges as the

TO(r37 rd)

illuminated region shrinks to a point, so that a £ — «©
limit for T'(%, r,, r,;) does not exist.

The total and spectral irradiance at r; can be ex-
pressed as the sum of contributions from each area
element of the extended source, dA,, according to

dE(rcb s)

E(rda Ts) = f d2 rg
Source dAs

= dE,\(\ T
[ @ [a BT g
Source 0 dAS

For an extended-area incoherent source, there is an
incremental spectral irradiance dE, (\, r,, T',) related
to a source area element, dA,. This equals the irra-
diance commensurate with a fictitious point source
times the effective density of point sources per unit
area, p. If |uy|? is the spectral power emitted per
point source per steradian, one has L,(\, T.,) = p|u,|*.
The incremental 1rrad1ance is therefore dE,(\, vy, TY)
- p|u(k r, rd)' dAs? g1V1ng

dE\(\, vo, Ty) _

dAs T(k r, rd)|u0|

= T(ka r rd)LxO\, Ts) (14)

Hence T'(%, r,, r,;) is the ratio of dE,(\, x4, T,)/dA, to
the source spectral radiance. Therefore we have

dE(ry;, Ty ([~
dA%s - .[) d\T(k, vy, vy) Ly(N\, TY)

o Lcl di)\ T(k7 r,, rd)
oo, Nexple/ Y] - 1

(15)

where c¢; and ¢, are the first and second radiation
constants, respectively. The factor e is the source
emissivity, which is unity for an ideal blackbody and
which we shall assume to be wavelength indepen-
dent. It is more useful to express this result by us-
ing the angular wave number %, yielding

dE(rdr Ts) _ €Cy * 3 T(k’ r rd) (16)
dA, 16w’ | exp(Bk) — 1’
where I have introduced
¢y he
b= 2T, kyT, (17

Without diffraction effects, the irradiance expected
from geometrical optics is given by

dEO(rd7 Ts) _ 3((4)601
dA, 8m°p*

:|T0(rs, ry). (18)
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Here {(z) = 2,_; n"° is the Riemann { function.
When diffraction effects are taken into account, we
have

dE(rd’ Ts) _ €Cq
da,  16%7(2m)*A?

8 J. dl J. dl,f(l’ r, rd)f(l,7 r, rd)

explik(l —1")]

X - dkk3+2N
f exp(Bk) — 1

0
(3 +2N)lec,
~16m7[(2m) A

X J. dl J. dl,f(l9 r, rd) f(l,y r, rd)

~ 1
g [nB —i(l — 1)+

(19)

Integration by parts with respect to / and /' also gives

dE(ry, T)) _ €Cy
dA,  16%7[(2m)*A?]

= = dfdl
XJ. le. dr’ f(’rs,rd)

d!
df(lla r rd) ? 142N
X — 2 2 2
0 J dkk
0
explik(l —1")]
exp(Bk) — 1
(1 + 2N)!€C1
~16m°[(2m) A%
” ” df(l7 rg rd)
X ’
Jlx d! J._m d! dl
df(ll’ r, rd)
X — 2 2 2
dl’
i ! (20)
“[nB—il — 1)

These integrations are all symmetric under exchange
of [ and I’, so only the real parts of integrals survive.
Also, results are unaffected if the function f(I, r,, r,)
is translated with respect to [.

The last result can be especially useful, because f(Z,
r,, r;) can have the property

g |:f(l; r, rd)

(z—zy“} =8d( Ly + b(l, v, ra), (21)
0.
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where b(l, r,, r;) is zero except for certain ranges of
[. In the case of N = 1, an assumption to be made
for the remainder of this section, some rearrange-
ment gives

dE(rd, T ) 3601
dA,  64w'd*d>

y f ML r@}

ds
% df(S + l’ rsa rd)
ds ’

J. diS(B, 1)

(22)

where the function S(B, /) is easy to evaluate and is
discussed in Appendix A.

This manner of expressing the last result extracts
all spectral aspects (for a thermal source, appearing
here by means of the parameter ), from the inner-
most integral, which becomes a purely geometric en-
tity. Such a separation of spectral and spatial
aspects of the flow of radiation is highly advanta-
geous, because the spatial aspects do not depend on
wavelength and hence can be treated simultaneously
for all spectral components. This is the main result
of this work. If the integration over s is performed
once for all /, the total irradiance may be deduced by
at most a single integration over /. Because the in-
tegrands are not highly oscillatory, numerical inte-
gration can be practical as an alternative to analytic
integration.

Typically, the parameter g has one value in the
illuminated region and is zero otherwise in the case
of Fresnel diffraction, and its contributions to df(l,
r,, r;)/dl are related to the geometrical wave in the
boundary-diffraction-wave formulation of Kirchhoff
diffraction theory.>¢ In that case the parameter [,
is an extremal value of /. Contributions to dE(r,,
T.)/dA, arising from the product of two geometrical-
wave terms are the same as what one would have
according to geometrical optics, and typically hav-
ing a nonzero g is synonymous with the existence
of the limit, T(r,, r;). This is clear from Eq. (10),
at least for the case of N = 1, where the factor
outside of the integral has a & — o« limit and con-
tributions from b(l, r,, r;) and/or b(’, r,, r;) in
the integrand do not contribute upon integration in
the £ — o limit if such functions are well behaved
and, in particular, do not have 3-function-like con-
tributions. For other, pathological cases, closer ex-
amination is necessary to interpret the present
assertions.

Contributions to df(, r,, r;)/dl from b(/, r,, r,) are
related to the boundary-diffraction wave. Their
contributions to dE(r,;, T,)/dA, are synonymous
with diffraction effects, and this permits a clear
identification of diffraction effects even at the start



of a calculation. In particular, in the case of N = 1

we have

3601g
32m'd2d};

dE(rd’ Ts) _ 3€cngS(Ba 0)
dA,  64n'd*d?

X J. dIS(B, 1)b(ly + I, xy, ry)

—®

3601

4+ — d.S [
64md%d f (B, 7)

—o

X J. dsb(s, r,, ry))b(s + 1, vy, 1)

dE
= Ez [IG + IX(B’ rg rd)

+ IB(B) r, rd)]' (23)

The first term is the one that would arise in geomet-
rical optics, while the two remaining terms are direct
consequences of diffraction and are expressed in
terms of the functions Ix(B, r;, r;) and Ig(B, r,, ry)
that have been introduced. Because Iy and Iy are
always functions of the same arguments, their argu-
ments are suppressed in much of what follows.
Also, even symmetry with respect to [ of the inner
integrand contributing to Iz permits one to integrate
over [ > 0 only and double the result. Furthermore,
in the integral contributing to Ix, b(, + /, r,, r;) may
be identically zero for all/ < Oor all/ > 0. I,isone
in the illuminated region and zero otherwise, and
henceforth dE,/dA, is assumed to denote the
geometrical-optics value in the illuminated region.
Although one might anticipate that analogous results
such as those just discussed can also be true for NV >
1, such an assertion remains to be investigated.

3. Application

Let us now seek to apply the above formulation to
assess diffraction effects on irradiance at the detector
in the N = 1 case. Without additional loss of gen-
erality, in what follows the area element of the source
that illuminates a diffracting aperture is assumed to
be centered on the optical axis.

A. Fraunhofer Diffraction

In the case of Fraunhofer diffraction, it is convenient
to express f(l, r,, r;) and all related quantities in
terms of the direction cosines from the center of the
diffracting aperture to r,: 6, = x,/d; and 0, = y,/
dy;. The path length traveled by light from the
source through the aperture to the detector plane is
given by

L(I‘s, ry, rd) =~ ds + dd - exxl - 9yyl
=~ ZO - Gxxl - eyyl. (24)

/
y /
/
/
/
/
I 7 /Q\
a9
7 v
, i
7.
7
/ : er‘ \QJ'
7 "
= =X
€3 / T
/ .
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L '--.,./§0
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i —r SR
; y -8
/ &
/ /s,
/
4 =Gy

Fig. 2. Rectangular aperture with several geometrical parame-
ters indicated.

Let us henceforth reset the constant /,, to zero, as we
are allowed to do. Using the identity

f D Af v = Any (25)

—o0

where A, ,; is the area of the diffracting aperture,
inspection of Eq. (19) already gives this general result
for irradiance on the optical axis:

dE(rda Ts)_
a, 77

15@(6)601Aip1
= 26
Smld?d?p’ (26)

I

B. Fraunhofer Diffraction by a Rectangular Aperture

Figure 2 depicts a rectangular aperture with width
2r, along the x direction and height 2r, along the y
direction. The dashed line indicates the direction
corresponding to a possible pair of values of direction
cosines (6,, 6,). Dotted lines are constant-/ contours
in the z = z; (aperture) plane. For convenience, [ is
defined to be zero at the center of the aperture.
Other values of [ are indicated on each contour. Itis
helpful to introduce two parameters, . = [(|0,r,] =
6,r,)|. From inspection, we see that f(l, r,, r,) is
zero for [ < —[_, rises steadily for -, <[ < —[_, is
constant for —/_ <[ < [_, decreases steadily in the
same manner for /_ <[ <[,, and is zero for [ > [_.
Using the sum rule of Eq. (25), we may deduce f(l, r,,
r,) = App /U + 1) for =1 <1 <I_, giving df ([, rs,
r,)/dl = iAApl/(li —12)=+Bfor—1, <l<-[_and
[_ <1<, respectively.
Using Eq. (20), we have
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dE(ry, T')
dA;

3ec,B?
32 "d2d?

(=]
<2
€Cq

—=l-
[ o]
.
1
[nB — i —1)]*

B? ” 1
([E [np — il — 1P

It

64-1T7d2dd

-1
dr’ —f

+14 +l4 =1 +l4 +ly
dlf dl’—j le. dl’+.[ le. dl’
+1- +i- =l +l- +-

==l |UI'=—1_
l_l+] )

(27)

r=-1,

The term shown corresponds to the first limits of
integration shown, and terms not shown follow ac-
cordingly. Gathering all terms and simplifying, in-
cluding using

1 . 1 (a+ib)*+ (a —ib)?

(@ —ib)® (a +ib)? (a®+ b%)?
~ 2(a®-b?
(@ + b’
2w (28)
Qi+ b (a+ b)Y

we arrive at
dE(r,, T,) ec,B?
di - 16q-r7c1l2d§[32 [£(2) - 4=®

xg@2m(l, —1)/B) —
X g2m(l, +1.)/B) + 2n°g(4wl,/B)
+ 2n’g(4wl_/B)]. (29)
Here we have introduced g(z) = S;(z) — 22%2S,(2);
S,(z) and S,(z) and a means to evaluate these func-

tions are described in Appendix A. A contour plot of
this result as a function of (6272 + 62r2)'/2/p is shown

1.0 tan=0.0 —— -
tang=0.5 -
tang=1.0 - - - -

0.8 1

<
o066 -
=
N 04r

0.2

0.0 .

00 01 02 03 04 05 0.6

2 2,12
(9 I 219 ) /B
Fig. 3. (dE/dA,)/E, for case of Fraunhofer diffraction by a rect-
angular aperture along three lines in the (6,, 6,) plane as discussed
in the text.
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in Fig. 3for = 0.0l mm, r, = 1mm, r, = 2mm. It
is normalized to give a result of unity for 6, = 6, = 0.
Curves are shown for (8,r,)/(6,7,) = tan d), Wlth tan
$é=0,tan ¢ = 0.5, andtand) = 1.

If we have 6, = 0, then we havel, =
above results simplify to

_ =1, and the

df(la r rd) _ (A

Apl)s(z +1) - (A;;)sa -0), (30)

d/ 2l
dE(I‘d, T) 3661Aip1 E 1
dA,  128%7d%dA* S (nB)4 (np — 2i0)*
S
(nB + 2il)*
3ec,Aj -
= Tosniqidigt 264 — S(L 2U/p))
(3D

In evaluating such results, care must be taken for
[, ~1_in Eq. (29) and small / in Eq. (31), because the
finiteness of dE(r,, T,)/dA, can depend on mutual
cancellation of two or more divergent terms.

C. Fraunhofer Diffraction by a Long, Narrow Slit

Diffraction by a slit is closely related to diffraction by
a rectangle. When the slit is very long, the Fraun-
hofer approximation is only appropriate along the
narrow direction, whereas the paraxial Fresnel ap-
proximation may be used along the long direction.
One therefore has, for a slit parallel to the y axis,

1
+ 2dd)y L (32)

1
L(r,, vy, ~1[y— 0,x; +
(rg, 11, T) 0 X1 (2d
and we again immediately reset [, to zero. Here,
terms linear in y; may be dropped when one takes the
limit of an infinitely long slit, as we shall do. In
place of Eq. (8), we shall use

u(k7 r, rd) = J. dlfl(la r, rd)eXp(lkl)

Uo
iNdd, |

= 1 1
X —+ —
L dy, exp{tk<2d 2dd)y1} ,

(33)



where we have

fil, v, ry) = f dac,d[1 — (—0,x,)]

x

=0(6,r,] —1)01 + |0,r])/]6,. (34)

This leads to

k
T(k, r, rd) - 2Tl'dsdd(ds + dd)
X f dl .[ dl/fl(la rs’ rd) fl(l,} r87 rd)
X explik(l —1")]. (35)
Using Eq. (16), we arrive at
dE(rd) Ts) _ €Cqy

dA,  32n°d.d,d,+d,)

x f A f Al v 1) 7, 1 1)

= dkk* exp[ik(l —1')]
. exp(Bk) — 1
. 3601
C4ntd.d(d, + d,)

xf dzf AFil, 1 1) il Ty 1)

X 2 [nB—il —1)]°

€Cq

T 16m°d.d(d, + d,)
% le dl J.oo dl, dfl(l’ r, rd)

dl
dfl(l rsa rd) 2 _ l,):lfg'
(36)

[np — i

The derivatives are given by

d 1 Z, s
f(dill'rd) — [a(l + |exrx|) - S(Z - |exrx|)]/|ex|

(37)

Continuing analysis in the same way that was used
for treating Fraunhofer diffraction by a rectangular
aperture, we obtain

dE(rd: Ts) _ EClh(Z) (38)
dA,  16w°d.d,(d, + d,)o%p>’
with
h(z) = 203) = 2 ———; E i

n=1

14 . ; .

h(z)/2*

Fig.4. Universal function A(z) relevant for the case of Fraunhofer
diffraction by a rectangular slit, plotted as A(z)/z? versus z.

andz = 20,r,/B. The function A(z), universal for all
infinitely long, narrow slits, is plotted divided by 2% in
Fig. 4, and h(z) is tabulated for several values in
Table 1. Note that we have h(0) =0, h(z) ~ 12¢(5)2>
for small z, and A(») = 2{(3).

D. Fraunhofer Diffraction by a Circular Aperture
For a circular aperture of radius R, the irradiance in
the detector plane depends only on 6 = (2 + 62)1/ 2
Noting that we have

L(rd, ry, rs) = lO - xlex - ylew (40)

and x7 + y2 < R? on the aperture, we reset /, to zero
and can easily obtain

2
fl, r, ry = o2 (R%0* — 1%)'? (41)
for |I| < RO, as well as f(I, r,, r;) = 0 otherwise. This
gives, when appropriate,
21
b(l, r,, I‘d) = - W (42)
Table 1. Function h(z) Versus z
z h(z) z h(z) z h(z)
0.0 0.0000 1.2 2.7871 55 2.4366
0.1 0.1215 1.4 2.7509 6.0 2.4315
0.2 0.4527 1.6 2.7029 6.5 2.4275
0.3 0.9105 1.8 2.6577 7.0 2.4243
0.4 1.3986 2.0 2.6191 75 2.4217
0.5 1.8407 2.5 2.5505 8.0 2.4196
0.6 2.1953 3.0 2.5088 10.0 2.4141
0.7 2.4522 3.5 2.4823 15.0 2.4085
0.8 2.6216 4.0 2.4646 20.0 2.4066
0.9 2.7219 4.5 2.4523 100.0 2.4042
1.0 2.7727 5.0 2.4433 o0 2.4041
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Application of Eq. (23) by use of b(s — [/2, r, r;) and
b(s +1/2, v, r,) gives

3ec, Ro-1/2

ds(s —1/2)(s +1/2)

dA, 8177d2dd64 dIS (B, 1)

~RO+1/2

dx[(RO — 1/2)%?

[(RO —s—1/2)(RO+s+1/2)(RO —s +1/2)(RO +s —1/2)]"

- 1°/4]

81T7d2d RO —1/2

(= 2){[(RO +1/2)/(R6 — 1/2)] -

x2})1/2

dx[(RO — 1/2)** — 17/4]

2R d1S(B, 1) J'

8’1T7d RO+ 1/2

3601

dx[(2RO — 1)*%?

(@ = 2H{1 - [(R6 — 1/2)/(RO +1/2)x*H"*

_ l2]

2R d1S(B, Z)J'

81T7d2dd64 2RO + [

3601R2

, (1 —2{1 —[(2R6 —1)/(2R0 + [)]’x*}"/?

dx[(1 — y)%® — 7]

[
!
Becr J'm dIS(B, 1)
|
g

1dyS(B, 2R0y) J‘

21T7d2d 1+y

o (L=a{1-[A-y)/A+yPh?

(43)

Successive steps feature various substitutions and
rearrangements, with key changes of variables being

x=s/(RO —1/2) andy = [/(2R0). Using
(1-y)%*—y* (1+2y
= ~ 1+
1+y 1+y ( y)
1o () (44)
1+y 1
we obtain
dE 3€C1R2

1
—=———> | dyS(B, 2RO
dAs 21T7d§d362 JIO Ly (B, y)

()
()] e

where complete elliptic integrals of the first and sec-
ond kind are defined by

" dt

Ko=) la-aa-—uwye 49
_ 2\ 1/2
E(u)=fldt(11 _L;Z) : (47)

0

with the indicated convention regarding the meaning
of their argument. Introducing a« = 2R6/B, and
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from transformation formulas for elliptic integrals,
one finds

dE 3ec,R? 1
= | dyS(1, ay)[K(1 - y?)
dA, 4n'd2d’e°p* L

—2E(1 - y%]

3ec,Aj 1
= Pl f dyS(1, ay)[K(L - y?)
§ 0

- 2E(1 —y%]. (48)

Because one may derive

I'(m+1/2)]?

A= aymra-—y =" (49)
’"_J.O Y Y74l Tm+1) |7

1
B, = J dyy*E(1 — y?)
0

_m I'm+1/2)I'(m + 3/2) 50)
4| Tm+DIm+2) |’
for small o we have
dE  3Bec A%, o o
A, w Lo mE [(2m)*"s,.(A,, = 2B,)]a™",
(51)

which is valid for « < 1. The {s,,} coefficients are
found in Appendix A. The factor (2m)?" arises be-
cause the argument z in Appendix A is equal to 2may
in this case. For somewhat larger «, direct numer-
ical integration of Eq. (48) may be done. For very
large a, the asymptotic behavior of m(a) = (dE/dA,)/
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Fig. 5. Universal behavior of n(a) for the case of Fraunhofer
diffraction by a circular aperture, as a function of angular param-
eter a (solid curve), and asymptotic result (dashed curve).

=, determined by using properties of hypergeomet-
ric functions, is helpful:

(@) 504¢(3) 378 log,x
nla od b
63(6y + 12 log,2 — 11
| 63(6y  log Vo 59
o

The function n(a) is plotted in Fig. 5 and tabulated in
Table 2. Note that we have n(0) = 1.

E. Fresnel Diffraction

In the case of Fresnel diffraction, it is expedient to
relate dE/dA, to the value of dE/dA, in the illumi-
nated region, as is done in Eq. (23). Let us continue
to assess the contribution to irradiance by an area
element centered on the optical axis. This area ele-
ment is assumed to be at r, = (0, 0, —d,), and we shall
consider the irradiance at r; = (x4, y4, dg)- A line
segment between r, and r, intersects the z = 0 plane

(ds + dg).
to

A total path length is reckoned according

9 P
Xqg T Ya

~d,+dg+
L(r37 ry, rd) ds dd Z(ds + dd)

9 o 1 1
+[(x; —x)" + (y1— ) ]<2d+ de)

=1ly+ Cl(x, — xi)2 + (y1— yi)2], (563)

where a parameter C has been introduced.

F. Fresnel Diffraction by a Circular Aperture

A circular aperture of radius R is assumed to be
centered around the z axis. In this case x; and y;
should sample the aperture. By symmetry, we may
introduce T = (x? + y?)'/2, and deal solely with .
Forr;in the illuminated region, where we have 7 <
R, [, may denote the smallest value taken by L(r,, ry,
r,), and L(r,, r{, r;) has increasingly larger values for
r, on increasingly larger circular contours centered

around r;. Freely setting [, to zero, we have
L(r,, vy, vg) = C[(x; — x:)* + (y1 = ¥:)"] = Cp?,  (54)
where we have introduced a new variable, p. An

entire circular contour is sampled by r, for p < R —
7. ForR — 1 <p <R + 1, the sampled fraction of the
contour is 0/, where we have

2 + 2 _RZ
0= cosl(pT) ) (55)
27p
Hence, for I < C(R — 7)2, we have
f(l; r, rd) = TI'/C, (56)

whereas for C(R — 1)2 <1 < C(R + 7)% we have

f(la rg, rd) = e/C

As [ increases over this range, 6 decreases from  to
zero. Forl > C(R + 1)2, we have

(57)

at (xi’ yia O), Wlth xi = dsxd/(ds + dd) and yi = dsyd/ f(la r rd) = 0 (58)
Table 2. Function n(e) = (dE/dA,)/E, Versus «
a M(e) a M(e) a M(e) a M(e) a M(e)
0.0 1.000000 2.0 0.027678 4.0 0.003313 6.0 0.000959 8.0 0.000400
0.2 0.903648 2.2 0.020738 4.2 0.002853 6.2 0.000868 8.2 0.000371
0.4 0.683744 2.4 0.015904 44 0.002474 6.4 0.000788 8.4 0.000345
0.6 0.459616 2.6 0.012446 4.6 0.002159 6.6 0.000718 8.6 0.000321
0.8 0.292239 2.8 0.009913 4.8 0.001895 6.8 0.000655 8.8 0.000300
1.0 0.184166 3.0 0.008019 5.0 0.001673 7.0 0.000600 9.0 0.000280
1.2 0.118206 3.2 0.006576 5.2 0.001484 7.2 0.000551 9.2 0.000262
14 0.078239 3.4 0.005458 54 0.001323 7.4 0.000507 94 0.000246
1.6 0.053589 3.6 0.004579 5.6 0.001184 7.6 0.000468 9.6 0.000230
1.8 0.037937 3.8 0.003878 5.8 0.001064 7.8 0.000432 9.8 0.000216
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Forr;in the shadow region, where we have 1 > R, we
have

f(l7 rg rd) =0 (59)

We may introducea’ = (I, — I, —1)/2and b’ = (I, +
Iy —1)/2,sothatifwe haves = a’x + b', we havex =
—lats=1[,andx = +1ats =1, — [. This leads
to

(A/a' —Bx — Bb'/a')(A/a' — Bx — Bb'/a' — Bl/a’)

4C'2 lo—11 +1
Ip g J. dlS(B,l)X.[ d

T4’ |, L @b (x b e+ a1 - <DL+ Ua)? - <P
B*‘B%C*k J'lzll J’“ dx(n,; — x)(ny — x)
= diS(B, 1) , (66)
wiwa ), P Gt ol - a1 - B
for ] < C(r — R)? or I > C(t + R)?, whereas we have = where we have introduced
f(ly r, rd) = e/C (60) A b, A b/
for C(t — R)2<I< C(R + 7)%. Here 0 is given by the M= B g T ey 4 o’
same expression as in the illuminated region. As/ , )
increases over this range, 0 starts at zero, increases to d. = IL d. = bf l « 1 67)
some maximum value, and then decreases to zero. T P al’ 1+1/a’
When relevant, we have g = w/C. Also, whatever
the case, for C|t — B> < < C(t + R)? we may use Likewi h
the chain rule to obtain 1KeW1Se, we have
b(l):l@:l@@: 12@. (61) (nl_x)(nQ_x)=1+ 1 & _ &
Cdl Cdpd 2pC"dp (x +dy)(x +dy) dy—di\x+d; x+dy)’
Differentiating 6 with respect to p and simplifying the (68)
result leads to
where we have introduced
bty = P (62)
I - L) — DIV
L= = D] £= (dy +n)(dy + o),
where we have &= (dy + ny)(dy + ny). (69)
> — R? 1
A= 9 B = 20’ However, the replacement
l,=C|t — R/, l,=C(t + R)% (63)
L1 6 &
As expected, we have I = 1 in the illuminated d,—dy\x +d, x+d,
region and I; = 0 otherwise. Next, we have
R N - R
dg_dl dﬁ_x2 d%-xz

(64)

X

_ B'C (= dIS(B, 1)(A - BI)
m{(4) J.ll I[( - 1), — 1)]V*

The integration may be carried out numerically with
relative ease, particularly with a change of the vari-
able of integration to 6, where we have [ = [, + (I, —
[1)(1 — cos 0)/2, and use of Gauss—Legendre quadra-
ture. Finally, we have

retains only the part of this expression that is even
with respect to x, whereas its odd part does not con-
tribute to results. After such a replacement, we may
truncate the integration range for x to being from
zero to one, if a compensating prefactor of two is
affixed to the result. Hence, we have

Iy

(A —Bs)(A—-Bs—BIl)

8402 J\lzll

9—1

2
0 5
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s(s + Dl(s = L)(s +1 = 1)Uy = s) Iy —s = DIV

(65)



B n%(4)a’ . .

4p2~2 -1y 1
I—2BBCKflldlS(B,l)[J. dx

[(1—*%)(1 - )]

B &/ds 1 dx
dy—d, J.O (1 —dy%)[(1 — 2)(1 — )]

2p*B2C2% leh

- w{(4)a’ dy—d;

0

s |
(B, D) K(x%) + (", %) =

n &/dy ! dx
dy —d, f (1 —d%A)[A - 21 - )]V

0

D
dy —d,

)H(dzz, KQ)] , (71)

where

1 de
(1 —d%H[(1 — 2)(1 — %?)]Y?

(d? «* = f (72)

0

is a complete elliptic integral of the third kind (with
the indicated convention for the meaning of its argu-
ments). The remaining single integration over [
may be done numerically with relative ease, with the
same change of variables and quadrature scheme as
for I.

Figure 6 shows results for (dE/dA,)/(dE,/dA,) for
B=0.1mm,d, =d,; =100 mm, and R = 10 mm (solid
line).

4. Conclusion

This work has presented a means by which one can
compute diffraction effects on total irradiance for a
broadband source. While much of the work may be
adapted to a variety of sources, in the immediate
context the methodology developed has been done so
with Planck sources in mind. I have successfully
demonstrated the capacity for treating Fraunhofer
diffraction by rectangular and circular apertures and
slits, and Fresnel diffraction by circular apertures.
Furthermore, a general mathematical framework

2.00 -
1.75 ¢
1.50
1.25
1.00
0.75 r

(dE/dA YI(AEy/dA.)

0.50
0.25

0.00

t 1 1 1 1

0 5 10 15 20 25 30 35 40

7, (mm)

Fig. 6. Diffraction effects on total irradiance because of a circular
aperture for a geometry discussed in the text versus distance from
the optical axis, r;. The solid curve shows results of numerical
calculations, and the dashed line shows what is expected from
geometrical optics.

and many functions and means to evaluate them
have been presented that will also be useful in other
contexts. Two topics of current interest to examine
in due course are treating multiple diffraction and
diffraction of synchrotron radiation.

Appendix A: Evaluating S(, /) and S,,,(2)
The sum

S, )= (g +il)*+ (np — i) ] (AD

and related functions arise frequently in this work.
Note that one may write

S(B, 1) =17"8(B/l, 1) =p*S(1,1/B), (A2)

and each manner of expressing S(, /) may be helpful
in some context. Using

b+il)*+ kb -il)™*
_ (b—il)*+ (b +il)!

(6% + %)
200" - 6L+ 1Y
6%+ 1%)°
2[(b® + 19 — 8I3(b% + I7) + 8]
(b2 + 13
167* 161*

=2/(b*+ 1?)? - (A3)

b2+ 1 b7+ 1)
we find

SB,1)=2> [(nB)?+*]2— 161> >, [(nB)*

n=1 n=1
+I3 41601 D [(mB)2+ 177, (A9
n=1
Defining z = 27l/B, we have

S(B, 1) =2(2m/B)*Sy(z) — 161*(27/B)°Ss(2)
+ 16142m/B)*S.(2)
= 2(27/B)*[Ss(z) — 82°S,(2)
+ 82%S,(2)], (A5)

with

S,.(z) =D, (4m’n? + 2% ™.

n=1

(A6)
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From Knopp,” we have

S = o [
12_22 1—-exp(—2) z 2

) (A7)

and S,(z) to S,(z) may be found by successively using

1 d
Spi(z)=—— i S,.(2). (A8)

2mz

Letting f = 1/[1 — exp(—2)] = exp(2)/[exp(z) — 1],
we may observe

f = df/de
~ exp(2)/[exp(2) — 1] — exp(22)/[exp(2) — 1
=f-1
fr=df/de* = (F = (1 - 2) = = 3f* + 2",
" = @3/ dz®

=(f- )1 - 6f + 6f?)
=f— 7%+ 12f* — 6f*. (A9)

Next we can arrive at the following expressions by
successive differentiation, while we use the above
results for f and its derivatives:

11 101
Sz(z)=—472f +4723f—2724_§,

1 3 3 1 3
S52) = 1681 " 164 T 1657 T 208 322

SU2) =~ g fT el e f
SR 16287 T 32267 T 39,77 T 9,8

5

- . Al
642" (A10)
Combining these to obtain S(B, /), we find
S(B, 1) =—-2(2m/p)* i%— ﬁ =—1""+0(™
’ 2z 12 '
(A11)

This form is suitable except when z is much smaller
than 1. Using

1 Y
= (4_n_2)m2

k=0

(4mn% +2H™

(m—1+ k) [-2%(4n>T
El(m — 1)Ip2m+2k ’
(A12)
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we also have
1 o0
(4’“’2)m 2

k=0

S,(z) =

« (m — 1+ Rk)(2m + 2k)[—2%/ (4]
kl(m — 1)!

= > 525, (A13)
k=0

where {(N) = 37_; n " is the Riemann zeta function,

and we have introduced coefficients {s,, ,}. This lat-

ter expression for S,,(z) is helpful for small z, where

it converges after very few terms. To lowest order,

we have
1 2 4
Siz)=— -
24 1440 60480
1 22 z*
Sy(2) = - + ———
22) = 1440 " 30240 T 806400 ’
Se(z) = L S
82/ 7 60480 806400 15966720
1 22 691z*
S4(Z) = - +
2419200 23950080 261534873600
327t 1 z2 z*
S, 1) = - + - .,
(B, 7) p* [1440 6048 69120 }
(A14)
or
327t
S(B, l) = ? Sa0 + 22(32,1 - 833,0)

+ 2 ZZk(Sz,k —8s5,-1 + 834,/@2)}
=2

= s,2%,
pa

where we have introduced coefficients {s,}. All of
these series converge for |z| < 2, i.e., |I/B| < 1.

(A15)
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