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ABSTRACT

The angular dependence and the polarization of light scattered by a small
particle a distance d inside and outside a reflecting surface is calculated in the
Rayleigh limit. This calculation yields expressions for the polarized bidirectional
reflectance distribution function (BRDF) matrices for in-plane and out-of-plane
scattering. The results are compared to those obtained from microroughness-
induced scattering. For the p-in/p-out configuration with oblique incidence, there
exist out-of-plane angles for which scattering due to one of the mechanisms van-
ishes, while that from the others does not. By exploiting this knowledge, improve-
ments in the detection of very small particles or subsurface defects can be made.
It is also shown that one must take care when differentiating subsurface-defect-
induced scattering from microroughness-induced scattering using in-plane scatter-

ing and wavelength scaling laws.
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1. INTRODUCTION

Optical scattering is often a powerful tool for in situ process monitoring in man-
ufacturing environments because of its noncontact nature and its relative ease of use.
However, the lack of a unique solution to the inverse scattering problem prevents its use
in a large number of applications. Improvements in the interpretation of scattered light
should therefore enable optical scattering techniques to be employed in new quality con-

trol applications.

The full strength of optical scattering lies in its ability to diagnose deviations from
ideal conditions. For example, optical scattering from smooth surfaces, such as mir-
rors, transparent optics, and silicon wafers, can yield information about the condition
of those surfaces. Surface roughness, particulate contamination, and subsurface defects
result from adverse conditions in a manufacturing environment, and distinguishing them

should result in improvements in the ability to identify the sources of such conditions.

Since a particle smaller than the wavelength of the light scatters in free space with
an efficiency proportional to the sixth power of its diameter, detection of very small par-
ticles quickly becomes limited by whatever other sources of optical scatter exist, such as
microroughness. Reduction of the microroughness-induced scatter thus improves the de-
tection of these small particles. OQut-of-plane scattering has been believed to allow the
discrimination between scattering resulting from particulate contamination and surface
roughness.! ~% Polarization techniques have also been employed to distinguish different

scattering mechanisms.*

In this paper, we explore polarized out-of-plane scattering that results from very
small spheres above (particles) and below (defects) a surface. We find that the polariza-

tion of scattered light is different for particulate contaminants, subsurface defects, and
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surface microroughness. In fact, there exist directions for each of these three mechanisms
for which p-polarized light will not radiate when p-polarized light is incident on the sam-
ple. By viewing the sample in these configurations, the signal from one of the sources

of scatter can be removed. We will present results of experimental measurements which

demonstrate this behavior in separate publications.®®

2. THEORY

We review the theory originally presented”’~? by Videen, et al. to calculate the an-
gular dependence and polarization of light scattered by a particle of refractive index ngpn
having radius a, located a distance d from a surface of a material with refractive index
Nmat- Lhe refractive indices may be complex, with nonnegative imaginary components.
We will restrict the discussion to particles sufficiently small compared to the wavelength
so that the Rayleigh approximation may be used throughout. Furthermore, multiple in-
teractions with the particle will be ignored, even when the particle is close to the inter-

face. This approximation should be valid for sufficiently small particles.

Figure 1 shows the measuring geometry used for this discussion. Plane wave polar-
ized light of wavelength A irradiates the surface and the particle at an incident angle of
0;. We are interested in solving for the radiance that is scattered into a direction defined
by a polar angle 6, and an out-of-plane angle ¢,. The scattering (Jones) matrix S is de-

fined as the relationship between the incident and scattered fields:

sca kR inc
EP ' — € SPP SSP Ep (1)
Escat R \ Sps Sss Eine )7
where R is the distance from the scatterer to the detector, and k = 2x/A. It is the pur-

pose of this discussion to calculate the matrix S. The bidirectional reflectance distri-

bution function (BRDF) is then related to the scattered field from a single particle or
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defect by

. Al2
BrROF = Y _15-¢° g (2)

A cosb, cosb; "’
where N/A is the density of scatterers within the illuminated area, & is a unit vector
parallel to the incident electric field, and F' is a structure factor that depends upon the

correlation between different scattering centers. For random and uncorrelated particles,

F=1.

We will calculate the scattered light fields in the following manner. First, the elec-
tric field E at the location of the particle will be determined in the absence of the parti-
cle. Then, the dipole moment of the particle, Psphere, will be determined assuming that
the particle is a sphere, so that!!

2 2

sph LS
2 2
nsph + 2nO

n

a’E, (3)

Psphere = 4meg

where ng is the refractive index of the surrounding medium. This induced dipole will

then be assumed to radiate according to'!

~

k x (k X Pophere), (4)

nngeznokR

dreg R

Escat _

where k is a unit vector in the direction of the radiating light (towards the detector).

A coordinate system will be chosen in each case discussed below so that the field can

be expressed with respect to a right-handed coordinate system defined by the basis set
{8, D, lAc} which will allow separation of the p- and s- polarized fields. That is, k is a unit
vector in the direction of propagation of the scattered light, § is a unit vector perpendic-
ular to k and parallel to the surface plane, and p = k x §. It is then straightforward to

show that
n(Z)kZeino kR

Escat —
dmeg R

(f)f) + éé) . Psphere- (5)



The interaction with a plane interface can be calculated by taking the inner-product
(from the left) of the field with an appropriate operator. The refraction operator for a

plane wave travelling from region ¢ to region j is then

£ (6:;)P;Di + 7 (6:)8;8:. (6)

where p; and §; are the unit vectors appropriate for describing the light before refrac-

tion, p; and §; are the unit vectors appropriate for describing the light after refraction,
and 6; is the angle of incidence of the light in region :. The Fresnel transmission coeffi-
cients, t;j (6;) and t¥7(6;), for an interface between materials having refractive indices n;

and n; are

tij(9i) _ 2 cos 8;
cos@; + \/(n]/nz)2 — sin? 6;
(7)
Iy 2(n;/n;) cos 6;
tp](Hi) =

(nj/n;)? cos6; + \/(n]/nz)2 — sin? ;.

The refraction operator for a spherical wave in the far-field is (see Appendix A)

n; { cosb; 1/2 i - ij . n
— [£29(0:)D;Di + t7 (6:)8;8:] (8)

n; \ cosb;

where it is assumed that the wave propagates as exp(in;kR)/R in region i. The reflec-

tion operator for both plane waves and spherical waves is simply

v (0:)P;Di + v (6:)8;8:, (9)
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where the Fresnel reflection coeflicients are given by

(nj/ni)? cosf — \/(n]/nz)2 — sin® 0

r;j(H) =
(nj/n;)? cos 6 + \/(n]/nz)2 — sin® 0
(10)
y cosO — +/(n;/n; 2 _sin?6
T i L

cos @ + \/(n]/nz)2 —sin? @

In this article, it will be assumed that light is scattered from the sphere only once.
That is, the interaction of the particle or defect with its image in the surface will be ne-

glected.

2.1 Particle above the surface

Figures 2(a—d) show diagrams describing the relevant first-order interactions be-
tween light and a particle above a surface. When the particle lies above the surface, it is
irradiated from two directions, directly from the source and from the image of the source
in the surface. The latter field is decreased and phase shifted by reflection and is also
phase shifted as a result of the added path length 2d cos 6; the light travels upon reflec-

tion. Therefore, the electric field at the location of the particle is

inc 12 5
E =E°[1 — ar,*(6;)] cos §; %
+ EJC[1 4 ar?(6:)] § (11)
+ E;nc[l + ozr;,2 (6;)]sin 6; z
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where E;nc (Er¢) is the p (s)-polarized component of the incident electric field, a =
exp(2ikd cos 6;) is the phase associated by the path-length difference, and with respect
to the superscripts on the reflection coeeficients, region 1 is the region above the surface,
and region 2 is the region below the surface. The dipole moment of the particle is then

given by Eq. 3 with no = 1. The orthogonal basis vectors used to describe the scattered

electric field are

Ssca = —Sings; X + cos P, ¥
Psca = —cos s cos s X — cos O sin ¢, y + sin 0,z (12)
lAcsca = sin 6 cos ¢ X + sin O, sin ¢ ¥ + cos 0,z.

Similarly the orthogonal basis vectors appropriate for the field which will reflect into

{éscad f)scaa l;sca,} are

S = —sin¢gsX +cos g,y

Prg = cos s cos s X + cos b, sin g, y + sin 0,z (13)

~

kg = sinf; cos s X + sin O sin ¢, y — cos 0;7.

Applying Eqgs. 5 and 9, the radiation in the far field is given by

2 _ikR
Escat _ k €

— 471'60R [f)scaf)sca + éscaésca + /87';,2 (es)f)scaf)rﬂ + /Bri2(93)§scaérﬂ] : Psphere7 (14)

where 3 = exp(2itkdcosf,) accounts for the path length difference between the light
directly radiated by the particle and that reflected from the surface. Simplifying the ex-

. . . . art art art
pressions, we arrive at the scattering matrix elements Sfj = qu S5, where

2 1
Sgart _ (nSL> a3k2 (15)

n?ph + 2
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and

gb™ =[1 4 Bri?(6,)][1 + ar;?(6;)] cos ¢,

art 12 12 .
qg’p =—[1- ﬂrp (0:)][1 + ar,“(6;)] cos 5 sin ¢,

gBe™t = —[1 4 Bri*(6,)][1 — ar,?(6;)] cos 6; sin ¢, (16)
q;’f,” =1+ 57‘1},2(93)][1 + ar},z(@i)] sin 0; sin 0,

—[1- ﬂrlZ(HS)][l — ar12(9i)] cos 0, cos 0; cos .

p p

From Eq. 2, the BRDF for a smooth surface covered with a density N/A of such parti-

cles is

2
167% [ n? p—1 ab NF
BRDF,..¢ = °P part . &|2. 1

RDFpar: A (n?ph + 2) cosf,cosb; A X |q” ¢l (17)

In the limit of a perfectly conducting surface, so that ny,e — ool + ¢), and for
d — 0, the elements gP?™t, qg’;rt, and q:f,’?rt vanish with order d? as d — 0, and ¢P3™* —

EX] qPP

4sin 6; sin 6.

2.2 Defect below the surface

Figure 2(e) shows the relevant first-order interactions for light interacting with a
sphere below a surface. When the particle or defect is located a distance d below the
surface, it is illuminated by only one source, and the detector only views the particle or
defect from one direction. However, due to refraction, the defect is illuminated from a
different direction than that of the incident light, and the radiated light must be appro-

priately converted into the viewing coordinate system. The fields local to the particle or
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defect can be expressed as

inc_ 412 I
E =E;“vt,*(6;) cos 0; %
+EMyt2(6:) 3 (18)

inc_ 412 . ! oA
+ Ep 7, (6;)sin 0, z,

where the angles 6} and ¢! are the complex internal angles upon refraction so that

1
sin 6, = sin 6;,
Mmat
(19)
1
I 2 -2 .
cos @, = nZ .. — sin” 6;,
Mmat

and v = exp(inmatkd cos8)) is a phase factor that accounts for the propagation and ab-
sorption of light from the interface to the defect. The induced dipole moment will be
given by Eq. 3 with ng = nnat. The scattered light can be then be expressed naturally

with respect to the orthogonal basis set

a STY N TN

Ssub = —sin ¢ X + cos P, ¥y

Psub = — cos 0., cos ¢ X — cos 8, sin ¢, ¥ + sin 6.2 (20)
[ . ! [N . ro. !~ !~

ksyb = sin b cos ¢, X + sin 0 sin ¢, ¥ + cos 6.z,

which transforms into the basis set in Eq. 12 upon refraction. Once again, the angles 6,
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and ¢’ are the complex internal angles upon refraction so that

1
. ' .
sin 0, = sin 6,
Nmat

(21)

1
I 2 2
cos b, = nZ .. — sin” 6s,

Nmat

and ¢, = ¢,. Applying Eqgs. 5 and 8, the scattered light in the far field outside the ma-

terial is

Escat _

Nmatk2e *F ( cos 0,

1/2
5t21 9, AscaAsu 5t21 91 AscaAsu 'Ps ere 22
phd ) (56216 ) pacaDaub + 6621 (6)Sucaboud] - Pepheres  (22)

!
cos 8’

where § = exp(inmatkdcos ). Once again, simplifying the above expressions, the scat-

tering elements are given by Sf]‘-‘b = qf?]‘-‘bSS“b, where

1/2
2 2 mat — sin” 6
o n sin” 6,
" Z 4 3/2 mat
SS“b = 46~ 251:)—2 cos 0, cos 9ia3k2nm/at (23)
T 2 cos 0,
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and

sub COS @

9ss =
(cos 0; + 1/n2 ., — sin? 6;)(cos 8, + 4/n2,,, — sin® 6,)

. 2 « 2
b —sin ¢sq/ns . — sin” O,

qsp -
(cos 0; + 4/n2 ., —sin? ;)(n2 . cos O, 4+ 1/n2 ., — sin® 6,)

(24)

. 2 . 2 .
b —sin¢sq/ni . —sin® 6;

qps -
(n? . cosb; + 1/nZ . — sin? 0;)(cos 05 + 4/n2 ., — sin? 0;)

. sin 6; sin 6 — \/nfnat — sin® 0, \/nfnat — sin® 6, cos ¢,
sub __

p — '
2 /12 :2 2 /12 L2
(n2 .t cos6; + 4/n2 . — sin® 6;)(nZ ,; cos O + 4/nZ . — sin® ;)

The BRDF for subsurface defects or particles is given by

BRDFgup =

2 2
2567* ( Tsph — "mat

2
NF
6 2 = 2 2 3 sub 22
Y T ) a® cos0;4/n2 . —sin” O |v6| n. . —— X |57 - é]”.
sph mat

mat A 1]
(25)
Note that |vd|?> accounts for the penetration depth of the material, so that defects far

below the surface are not observed when the material is absorbing.
2.3 Roughness-induced scatter

To compare these results with those for microroughness-induced scatter in the

smooth surface limit, we summarize the results of first-order vector perturbation
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(Rayleigh-Rice) theory.!?~!* Assuming that the power spectral density (PSD) of the sur-
face is given by S(f), where f is a two-dimensional spatial frequency, the bidirectional

reflectance distribution function is given by

1672 topo (2
BRDFtopo - A—‘lCOS 91 CcoSs HSS(f) X |q”P e, (26)

where the qzt.;-)po are given by

topo __ (nlznat — 1) cos ¢’5

qss -
(cosO; + 4/n2 . — sin? 0;)(cos 05 + y/n2 ., — sin? 0;)

2

_(nmat - 1) sin ¢’s n1211at - SiIl2 8,

topo __

qsp -
(cos §; 4+ 4/n2 ., — sin® 6;)(n2 ., cos O, + y/n2 ., —sin® ;)

(27)
% _(nlznat - 1) sin ¢’s n1211at - SiIl2 91
gisre =
(n2,., cos0; + 4/n2 ., — sin® 6;)(cos 8, + y/n2 ., — sin® ;)
(nZ., —1) (nfnat sin 6; sin 6, — \/nfnat — sin® 0, \/nfnat — sin® @, cos gﬁs)
topo __
A 2 2 - 2 2 2 - 2 ’
(n2 ., cos; + 4/n2 . —sin®0;)(n2 ,, cosOs + 4/n2 . — sin” 6;)
and the spatial frequency vector f is related to 6;, 8;, and ¢ by the Bragg relations
Afe = sin 0, cos ¢ps — sin 6;
(28)

Afy = sin O, sin ¢s.

For §; = 6, = 6 and ¢, = 0, the factors ¢i°P° and ¢'°P° converge to the specular reflectiv-

ities, r4(0) and r,(6), respectively.
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3. RESULTS AND DISCUSSION

3.1 Relation to previous results

Particle scattering from smooth surfaces has been investigated previously in the
Rayleigh limit"1% and for larger spheres.®:?''572! Aside from our expressing the calcu-
lated scatter distributions in terms of a polarized BRDF, the results presented here are
very similar to the previous results for Rayleigh particles. However, there are some dif-

ferences, which we briefly discuss in this section.

The results for the scattering from a small sphere above a surface match those of
previous reports,”® when one considers the slightly different coordinate systems used.
In this paper, we have been careful to maintain a §, p, k right-handed basis set for all
waves, and to use the reflection coeflicients befitting these bases. It is common, however,
to use a different coordinate system, for which the coordinate system describing the exi-
tant wave has a different handedness than that of the incident wave; the result is a sign
difference in r, with respect to the present results, and a sign difference in one of the
columns or rows of the scattering matrix. Consistency between the input and scatter-
ing coordinate systems ensures that the scattering matrix signature in the absence of a

sample is always the unit matrix.

The results for the scattering from a sphere below a surface differ from those de-
rived previously.® The previous result did not evaluate the field far from the sample, and
therefore did not account for the changing divergence of the light upon refraction. The

implications of this distinction will become important later in Sec. 3.3.
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3.2 The polarization of light scattered out of the plane of incidence

Previous studies have only evaluated the results for the case of in-plane
scattering.”~91°~21 It is demonstrated here that the out-of-plane scattering signatures
for the three mechanisms discussed above are vastly different and potentially allow a

means for experimentally separating these contributions in a material.

In the previous section, we have intentionally separated terms ¢;; which have a de-
pendence on the polarization. Comparison of Eqgs. 16, 24, and 27 yields nothing extraor-
dinary about the g,;, gps, and ¢, terms for either the particle scattering, subsurface
defect scattering, or topographic scattering. Each of these terms has an identical func-
tional dependence on ¢,, being either cos ¢, (for gs,) or sin ¢ (for ¢, and gps). Thus,
for these input/output polarization combinations, the contributions from the different
scattering mechanisms cannot be easily distinguished by viewing out of the plane of inci-

dence.

However, the functional forms for g,, differ substantially. Figure 3 shows |q£;rt|2,

sub|2
)

g55° 1%, and |gioP°[?

op as functions of ¢ for input and output angles of 8; = 8, = 45° and a

substrate refractive index appropriate for silicon at A = 633 nm (nmat = 3.882 + 0.012¢).
The differences between the g, are readily apparent. It can be seen from Fig. 3 that

topo sub a

there exist out-of-plane angles ¢ for which ¢ vanish, while q:f,’prt does not.

pp O Ipp
In particular, at ¢s = 59° and ¢, = 87° the scattered light from microroughness and

subsurface defects vanish, respectively. For 8; = 8, = 45°, there is no out-of-plane angle

for which scatter from particles above the surface vanishes.

Using the refractive index for silicon, Figs. 4, 5, and 6 show the |gp,|* for the three

mechanisms as functions of ; and ¢;, each at three different incident angles, 8, = 20°,
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45°, and 70°. All three mechanisms have distinctly different behavior. At nearly all in-
cident angles, 8;, and scattering angles, 8, pp scattering from small particles is nearly
constant in ¢;. Subsurface defect scattering, in contrast, has a marked decrease near
¢s = 90°; the relatively constant angle ¢ with 6; and 8, is a result of the large index
of refraction of silicon. For microroughness-induced scatter, the azimuthal angle ¢, at

which |gtoPe|?

op vanishes depends strongly on the incident and scattering angles, 6; and ;.

It can be seen that this behavior is an bidirectional equivalent of Brewster’s angle, by
noticing that the “trough” in Fig. 6 moves towards the specular direction 8, = 6; and

¢s = 0 as the incident angle moves towards Brewster’s angle, 5 = 75.6°.

There are combinations of 6; and 6, for which a scattering-null ¢, exists for each
of the scattering mechanisms. Figure 7 shows the out-of-plane angle ¢, for which a null
occurs for each combination of 8; and 8;, for each of the scattering mechanisms, and for
two different materials, silicon and glass. The curves display combinations of 8; and 8,
for which a scattering null exists, by showing curves of constant ¢, where the null oc-

curs.

The theory becomes more complex as the particle size restriction is lifted, and the
Rayleigh limit is no longer valid. However, the contributions from the topographic scat-
tering will not change under those conditions, and the scattering from particles is not ex-
pected to develop minima in the same region. The model assumed that the particles are
spherically symmetric, both in their size and shape as well as their microscopic struc-
ture. For non-spherically symmetric particles, the induced dipole moment cannot be
expected to be parallel to the applied electric field. Thus, the theory will require mod-

ifications for particles which are birefringent, non-spherical, or magnetic.

The expressions in Eqgs. 16, 24, and 27 are all written as Jones matrices, implying

that no light is depolarized. However, the models for particles and defects imply that
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all N particles and defects are identical in the sampling area A. Since the polarization
terms qf;rt depend upon d, a distribution of particle sizes will give rise to some depolar-
ization of the scattered light (since d = a for a particle attached to the surface). How-
ever, the distribution of heights for which the Rayleigh approximation is valid should be
sufficiently small that depolarization can be neglected. Nonspherical particles will lead
sub

to depolarization, since their orientations will be random. Since ¢}

;7 is independent of

d, a distribution of defect depths should not depolarize the scattered light. However, like
particles above a surface, a random distribution of non-spherical defects would lead to
depolarization of the scattered light. To first order, light scattered by microroughness is

not expected to lead to depolarization.
3.3 On the use of wavelength scaling to determine scattering mechanism

The results of the above calculations have some profound implications on the cur-
rent practice of using wavelength scaling to deduce the mechanism by which light is scat-
tered in a particular sample.?? BRDFs measured at a number of different wavelengths
are often converted to the PSD of the surface roughness using Eqs. 26-28. If the curves
lie upon each other, then the results are interpreted as indicating that the light is indeed
resulting predominantly from scattering from surface microroughness, and not from an-
other mechanism, such as subsurface defects, particulate contamination, or grain bound-
aries. We point out in this section that this practice can be misleading, especially if the
measurements were only carried out in the plane of incidence or with s polarized inci-

dent light.

Comparison of the results from microroughness-induced scatter with those from
subsurface defects yield striking similarities between the angle and wavelength depen-
dences. The BRDF from both mechanisms can be considered to be the product of four

factors: a Rayleigh blue sky factor with the 1/\* dependence, an obliquity factor having
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the product of the cosines of incident and viewing angles, a structure factor [F' in Eq. 25
and S(f) in Eq. 26], a polarizability factor [the a®|(n? n? )/(ngph + 2n2 )| factor

sph =~ '“mat

in Eq. 25 and the nZ_, — 1 factor in Eq. 27], and a polarization-dependent factor (the g

mat

factors).

The g5, gsp, and g, are identical for the mechanisms (with the exception of the

2

2 ot — 1 factor, which by convention is included in the microroughness-induced terms).

n
The g, are very similar for the two mechanisms, but not identical. The obliquity factors

are nearly the same, except that, for subsurface defects, the applicable scattering angle is

the internal angle 6! instead of the external angle ;.

Although we have not explicitly written out the structure factor for subsurface de-
fects, it is expected to have a form similar to that for microroughness. That is, defects
in many systems are likely to have correlations with each other and be expressible with
a power-spectrum. Correlations of a given spatial frequency in the surface plane will
diffract into the same angles as those for the same spatial frequency of surface micror-
oughness using Eq. 28. Furthermore, the defects are likely to exist very near the surface
and therefore “follow” the topography, making power spectra for the subsurface defects

and the topography behave similarly.

The obliquity factor has a minor effect on the BRDF except at large scattering an-
gles, where subsurface scattering would cause an “upturning” in the data at large spatial
fregencies, if it were misrepresented as resulting from microroughness. This “upturn-
ing” is commonly observed in the reported PSD for a wide variety of surfaces, is usually
left unexplained, and always causes deviations from the PSDs measured with different

wavelengths.??
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The polarizability terms, of course, are different since the scattering sources are dif-
ferent. Depending on the type of subsurface defect, this term may have a strong wave-
length dependence or a weak one. If the defect has a refractive index very close to that
of the host material, then small changes in one wavelength dependence compared to the
other can cause relatively large changes in the polarizability of the defect. However, if
the defect has an refractive index much different than the host material, then one might
expect that the wavelength dependence of the polarizability can be very similar to that
of the microroughness. In fact, if the defect is a void having index nspn = 1, then the
polarizability associated with the defect has a functional dependence very similar to that

associated with microroughness.

It has been demonstrated that subsurface defects can lead to wavelength depen-
dences in the BRDF which would mimic those expected from microroughness. From the
above points, one must question the correctness of using wavelength scaling when inter-
preting scatter distributions. Polarization-sensitive measurement of scattering out of the
plane of incidence, on the other hand, is much more sensitive to the nature of the ma-
terial response, since, in effect, it responds to the change in the direction of the induced
polarization in relation to the incident electric field, and thus responds to the different
reflective and refractive interactions which the light experiences during the scattering
process. The search for the existence of nulls in the polarized scattering provides a much

stronger test for the verification of topographically-induced scatter.
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4. SUMMARY

It is shown that polarized light scattered from particles above a surface, defects be-
low a surface, and surface microroughness can give rise to very different dependences on
the out-of-plane scattering angle. Zeros in the scattering functions can be found at dif-
ferent out-of-plane angles for each of the scattering mechanisms, allowing the supression
of light scattered from surface roughness, subsurface scattering, and to a lesser degree,
particulate contamination. The common practice of using wavelength scaling to deter-
mine the scattering mechanism is questioned on the grounds that in-plane scattering
resulting from microroughness and subsurface defects are too similar to allow an unam-

biguous determination of a mechanism for observed scattering.
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Appendix A: The Transmission of a Spherical Wave Through a Plane Interface

It is common to use transmission coefficients to relate the field strengths of a plane
wave on two sides of an interface. In this Appendix, we will derive expressions which
relate the far field transmission of a spherical wave eminating from a point near a planar
interface. The issue here is that a spherical wave will change its divergence as it passes
through the interface. That is, the solid angle d©?y = sin 8,df;d¢; inside the material

refracts into d€)s = sin 65df>d¢, outside the material. From Snell’s law,

n1sinf] = nysinf,.

Differentiating, we have

11 cos 81dB; = ny cos 05d0,.
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Therefore (realizing that ¢; = ¢2)

dﬂz = sin 92d92d¢)2

! sin 81 nq cos 8 d6, do,

9 N9 cos By

n% cos 64
— — dﬂl
ns cos 85

In the geometrical optics approximation, the intensity of light (and hence the square
of the field) along a bundle of rays is inversely proportional to the cross sectional area
of that bundle. Therefore, one would expect an extra factor of (n;/ nz)\/cos,@l/—cosﬂz
in addition to the transmission coefficient when calculating the field strength in the far

field.
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FIGURE CAPTIONS
FIG. 1 The measuring geometry, defining the angles 8;, 8,, and ¢;.

FIG. 2 The first-order interactions between light and a sphere above a surface (a—

d) and below a surface (e).

FIG. 3 The |gp,|?® factors for a sphere above a surface (d = 0), below a surface, and
for microroughness as functions of the azimuthal angle ¢;. The incident angle 6; and
viewing angle 6, are both 45°. The substrate material is assumed to be silicon (nmat =

3.882 + 0.012¢) at A = 633 nm.

FIG. 4 The |qg;rt|2 factors for a sphere above a silicon surface (d = 0, nyat =
3.882 + 0.012¢) as a function of 6, and ¢, for three incident angles: (a) 8; = 70°, (b)

0; = 45°, and (c) 6; = 20°.

FIG. 5 The |q;‘;,b|2 factors for a sphere below a silicon surface (nmat = 3.882 +
0.012:¢) as a function of §; and ¢, for three incident angles: (a) 8; = 70°, (b) 6, = 45°,

and (c) 6; = 20°.

FIG. 6 The |q§f§"°|2 factors for a microrough silicon surface (nmat = 3.882 4 0.012¢)
as a function of 6, and ¢, for three incident angles: (a) 8; = 70°, (b) 6; = 45°, and (¢)

0; = 20°.

FIG. 7 Curves of constant azimuthal angle ¢, for which zeros exist in gp,, plotted
in the 6;-0; plane for scattering from particles, subsurface defects, and microroughness.
The functions are evaluated using the refractive indices for glass (nmat = 1.4) and silicon
(Pmat = 3.882 + 0.012:). For (6;,0;) to the upper right of each ¢, = 0 curve there exist

no zeros in the g,,. The ¢, = 90° curve is identical to the 6; and 6, axes. For defects
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on silicon, the angles ¢, are always greater than 80°, so the contours are not shown. For

scattering from particles, d = 0.
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