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Abstract

When photon-counting detectors are calibrated in the presence of a
background signal, deadtime effects can be significant and must be care-
fully accounted for to achieve high accuracy. We present a method for
separating the correlated signal from the background signal that appro-
priately handles deadtime effects. This method includes consideration of
pulse timing and afterpulsing issues that arise in typical avalanche photo
diode (APD) detectors. We illustrate how these effects should be ac-
counted for in the calibration process. We also discuss detector timing
issues that should be considered in detector calibration.
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1 Introduction

The photon pairs produced in parametric down-conversion provide a fundamen-
tally absolute way to calibrate single photon detectors [1–14]. Because the pho-
tons are produced in pairs, the detection of one photon heralds with certainty
the existence of the other. To measure detection efficiency, a trigger detection
system is placed to intercept some of the down-converted light. The detector
under test (DUT) is then arranged to collect all the photons correlated to those
seen by the trigger detector (and usually more). In the ideal case, the DUT
channel detection efficiency is the ratio of the number of coincidence events to
the number of trigger detection events in a given time interval. (By ideal case
here, we mean that other than the two-photon source, there are no competing
mechanisms causing the detectors to fire and by coincidence we mean that the
two detectors fire due to the two photons of a pair.) If we specify the collection
efficiency of the DUT and trigger channels by ηDUT and ηtrig, respectively, then
the total number of trigger counts is

Ntrig = ηtrigNp (1)
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and the total number of coincidence counts is

Nc = ηDUTηtrigNp, (2)

where Np is the total number of down-converted photons emitted into the trigger
channel during the counting period. The absolute detection efficiency of the
DUT channel is then simply

ηDUT =
Nc

Ntrig

. (3)

Note that this is the efficiency of the entire detection channel (including collec-
tion optics, etc.) and not just the efficiency of the DUT alone [15, 16].

A number of groups have pursued detector calibration using this method (see
Ref. [15] for a more detailed history). We are currently pursing an experiment
where we hope to achieve calibration uncertainties on the 0.1% level. To achieve
this level of uncertainty, we must carefully consider how the idealized calibration
setup described above is actually implemented in the laboratory. In this article
we describe some subtle effects that arise from non-ideal measurement devices,
and illustrate how they can be handled to achieve low uncertainties.

An accurate experimental determination of Ntrig is usually straightforward:
the electronic detector signals are summed during the counting period, and then
darkcounts and counts due to background photons are estimated and subtracted
off. Experimental techniques for making these estimates are detailed in Ref. [16].

Determining NC accurately requires significantly more effort. In a typical
calibration setup, NC is determined by making a histogram of the delays between
trigger and DUT detection events (see Figure 1a). In this setup the photons
produced simultaneously are sent to two avalanche photodiode (APD) photon-
counting modules, one designated as trigger and one as DUT. The trigger and
DUT detector module outputs are sent to the start and stop inputs respectively
of a time digitizing circuit that records the arrival time of each pulse. The
electronic signal of the DUT is delayed with an appropriate length of cable to
assure that that the DUT (stop) pulse arrives at the time digitizing circuit after
the trigger (start) pulse.

The histogram in Fig. 1a records the delay between each DUT event and
the most recent trigger event. The principal coincidence peak (A) is evident
in the histogram at a delay of 55 ns, and to first approximation, the number
of coincidences NC can be estimated as the sum of events in this peak, with
the background subtracted off. However, a more accurate determination of the
number of coincidences requires an understanding of the smaller peaks (E) at
13 ns, (F) at 34 ns, and (D) at 98 ns. Moreover, it is not immediately clear
what background to subtract because the levels are different on either side of
the main peak. The difference in background levels is due to detector deadtime,
and becomes more pronounced in situations where the DUT has high detection
efficiency and the background count rate is high. In these situations, the simple
background subtraction technique introduces small errors because it does not
account for deadtime effects. In this paper we illustrate how to properly han-
dle histogram data when calibrating high efficiency detectors in the presence of

2



high background rates. While the corrections to the simple background sub-
traction technique are small, they can be relevant when calibrating detectors to
high precision. We also discuss timing and afterpulsing issues that arise when
considering a histogram like the one in Fig. 1a.

2 Histogram Features

To correctly calibrate the detector, we must first consider all of the features
(peaks, backgrounds, valleys, etc.) and determine their origins. Then we can
separate ‘heralded’ photon events from background events. To illustrate this
process, we consider the data in Fig. 1a. The main coincidence peak (A) is the
most prominent feature of the histogram and obviously represents correlated
events. The origin of the small ‘shoulder’ (labeled B) on the right the main
coincidence peak is a little less obvious. In section 4 we will see that this shoulder
represents valid, but delayed, coincidence counts, and we will discuss why they
are delayed. The broad dip (labeled C) to the right of the peak is due to detector
deadtime. Since the detector is most likely to receive a photon at a delay of
≈ 55 ns, it is also likely to be ‘dead’ for a finite duration at subsequent delays
and thus is unable to register the arrival of background photons. This behavior
complicates the process of separating background events from correlated events.
In section 3 we discuss how to to properly separate the two types of events in
the presence of deadtime.

Peak D is due to afterpulsing in the DUT. The APDs in our setup are actively
quenched (i.e. the bias voltage is reduced to below the APD breakdown voltage)
for ≈ 42 ns after an event is registered. When the quenching ends, there is a
small probability that the detector will produce a false pulse (referred to as an
afterpulse). The size of this peak indicates that an afterpulse is registered for
≈ 1% of the pulses in the main coincidence peak. We will discuss the structure
of the afterpulse in section 4.

The tiny peaks labeled E and F are specific to our particular setup. Peak
E is produced by afterpulsing of the trigger detector. Because we have delayed
the arrival of the DUT pulses ≈ 55 ns longer than the trigger pulses, the af-
terpulses of the trigger arrive before the correlated DUT pulses. Because we
measure the delay between DUT pulses and the most recent trigger pulse, this
results in a small coincidence peak 42 ns before the main peak. These are valid
coincidences, although they make only a tiny correction to the final detection
efficiency (≈ 0.1% of peak A) in the situation shown. This peak could have been
eliminated by simply adjusting the delay lines so that the main coincidence peak
occurred at a delay less than 42 ns (or ignoring trigger pulses that occur too
close to the previous trigger). We chose to leave the setup as shown to help
illustrate the other effects discussed below.

Peak F is also simply understood. In our setup, we couple trigger photons
into a fiber and then couple the output of the fiber onto the trigger APD.
There is a small back-reflection at either end of the fiber, and photons that
experience a back-reflection at both ends of the fiber arrive at the APD after
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traveling two extra fiber lengths. Our fiber is 2 m long and this extra double-
pass corresponds to a delay of ≈ 20 ns. Again, the coincidences in this peak are
valid, and account for ≈ 0.1% of the total coincidence counts. Eliminating, or
antireflection coating, the fiber in the trigger detection path would remove this
peak, but we left it in our setup for convenience and to illustrate things that
should be considered in a high accuracy detector calibration.

3 Separating Background from Signal

When high efficiency detectors are calibrated in situations with high background
count rates, the simple background subtraction method discussed earlier in-
troduces errors in the estimation of detector efficiency. For a more accurate
treatment, we use a probabilistic treatment of the data to separate background
events from events correlated to the trigger.

We begin with a measured histogram denoted by H(τi), where τi denotes
the time delay for the ith bin. As usual, the histogram records the cumulative
number of detection events received in each bin. The number of histogram
trigger pulses (i.e. histogram starts) received while accumulating the histogram
is specified by T . Our goal is to separate the events represented by H(τi) into
two categories: events correlated to the trigger pulse and background events.
Formally, we write

H(τi) = Cm(τi) + Bm(τi), (4)

where Cm(τi) and Bm(τi) denote, respectively, the number of correlated and
background events recorded in a given bin. The subscript ‘m’ reminds us that
these quantities represent the number of correlated and background events that
were actually measured in each bin. In a calibration, efficiency can be defined a
number of ways. Here, we define it as how many correlated events would have

been measured if the detector were ‘live’ (ready for a detection) each time a
correlated photon was incident on the system. This number will be larger than
the simple estimate of efficiency Cm/T , since the detector may be dead when the
correlated photon arrives due to a previous background count. In addition, the
background rate may not be a simple constant due to previous background or
correlated events (recall that this is the origin of the dip labeled C in Fig. 1(a)).

We consider a simple model of detector deadtime where the detector is ‘dead’
for d time bins after registering an event (where d is an integer), and then
immediately becomes ‘live’ again. For ease of notation, we will assume that the
delay of the DUT channel has been chosen long enough that all of the correlated
signal appears after the dth histogram bin.1 This requires that

Cm(τi) = 0 (i ≤ d). (5)

1The specification that all correlated signal occurs after d bins is, of course, artificial and
introduced only for notational convenience. In practice, it is usually easier just to record
the correlated signal and then pad the leading portion of the histogram with some extra
background rather than using extra long DUT delays.
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Figure 1: (a) Typical histogram H(τ). The main features are A–the main
peak due to coincident photons, B–extended shoulder due to delayed output of
APD, C–the region where the detector is dead after firing, and D–peak due to
afterpulsing. E and F are minor effects discussed in the text. (b) The calculated
background Bm(τ) (heavy line) together with the measured histogram. (c) The
probability of getting a correlated photon in each bin, c(τ), offset by 10−4 (so
it can be plotted on a log scale).
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We also assume that the mean number of background events in a given bin is
constant before correlated events arrive, and define B0 as the average number of
background events/bin recorded in bins with i < d. Using B0, we can calculate
the probability b that a background event could be measured in a bin (during
a given scan) assuming that the detector was alive at that moment. In the
absence of correlated signal, this is simply

B0 = b × (T − dB0). (6)

The value in parenthesis of Eq. (6) gives the total number of times that it was
possible to record an event in the bin (i.e. the total number of scans minus the
number of scans where the detector was dead due to a background event in one
of the previous d bins).

We can also write an expression for b in the presence of correlated signal. In
this case we have

Bm(τi) = b ×



T −

i−1
∑

j=i−d

H(τj) − ∆(τi)



 (i ≥ d). (7)

As before, the number in parenthesis is the number of scans where it was possible
to record a background event in the bin. The sum gives the number of times
that the detector was dead in the ith bin due to a background or signal events
in one of the previous d bins. The function ∆(τi) accounts for the situations
where a trigger pulses resets the delay before it reaches the ith bin. (Recall
that we histogram DUT events with respect to the most recent trigger event.)
Since the trigger detector also experiences deadtime, ∆(τi) is equal to zero for
the first d bins of the histogram. After that, ∆(τi) grows with τi (linearly to
first approximation). It is usually a simple matter to extract ∆(τi) from the
measured histogram.

We can combine Eqs. (6) and (7) to write a convenient expression for Bm(τi)
in terms of measured quantities:

Bm(τi) =
B0

T − dB0

×



T −

i−1
∑

j=i−d

H(τj) − ∆(τi)



 (i > d). (8)

To evaluate this equation, we need Bm(τi) for i ≤ d. Since we have specified
that there is no correlated signal and ∆(τi) = 0 in this region of the histogram,
we have Bm(τi) = H(τi) ≈ B0, (i ≤ d). Figure 1b shows Bm(τ) calculated
for the histogram in Fig. 1a together with H(τ) for comparison. Note that
our definition of b does not distinguish between a background event and an
afterpulse of a background event, which results in slight underestimation of the
background during the dead region in Fig. 1(b), however such underestimation
results in ≈ 0.03% error in the final overall detector efficiency.2

2To introduce a simple correction for afterpulses due to uncorrelated events, one could
assume that the number of afterpulses in the histogram bin i is proportional to the number
of events in the bin (i − d) with a constant probability of an afterpulse β, i.e. by adding
βH(τi−d) to the righthand sides of Eqs. (6) and (7); β can be determined as a ratio of peaks
D and A.
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We can use the background found using Eq. (8) together with Eq. (4) to
determine the number of correlated events measured in each bin (i.e. Cm).
Then, we use Cm to calculate the probability c(τi) that a correlated photon
would register in a given time bin, assuming that the DUT was live during that
time bin:

c(τi) =
Cm(τi)

T −
i

∑

j=i−d

Bm(τj) − ∆(τi)

. (9)

Since at most one correlated photon arrives in any given scan, the DUT will
never be dead in a given bin due to a correlated signal in one of the previous
d bins. (It is possible to have more than one correlated event per scan in cases
where the DUT afterpulses, but the first correlated event will not cause the
DUT to be dead for the second event.) Thus, the sum in the denominator
only needs to account for the number of times the DUT was dead due to a
background event received in one of the previous d bins. The function ∆(τi) is
included again since trigger pulses can reset the scan before a correlated event
is recorded in a given bin. Figure 1c shows c(τi) for the histogram in Fig. 1a.

The function c(τi) gives a time resolved description of the DUT response
to an input photon. A simpler measure of the DUT detector response is its
detection efficiency ηDUT, which gives the probability that the detector will pro-
duce an output pulse from an input photon (without worrying about when the
output pulse will occur). A first approximation to this measure is obtained by
summing the probabilities c(τi) for each bin

η′

DUT
=

∑

i

c(τi), (10)

where it is assumed that all time bins with any significant probability of reg-
istering the heralded pulse are included in the sum (e.g. for 10 < τ < 70 in
our example) and after pulsing features are excluded. To get a more accurate
representation of the detection efficiency, we must correct for background events
in the trigger channel. To do this we need to calculate the probability that the
trigger pulse was due to a heralding photon, as opposed to a background photon
or dark count in the trigger channel. We denote this probability by th. The
detector channel efficiency is then given by

ηDUT =
η′

DUT

th
(11)

To extract the efficiency of the DUT alone, the reflective and absorptive losses
due to any optics in the channel path must be accounted for, as detailed in
Ref. [16].
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Figure 2: (a) Comparison of the histograms taken with standard and modified
APD circuitry and (b) Histograms of APD with unmodified circuitry taken as
the light spot is scanned across the diameter of the APD. Peak shifts of up to
≈2 ns are seen at the edges of the APD active region. The shoulder feature
of (a) is also seen in (b) extending for ≈10 ns. The white curve (on left side)
indicates the sensitivity of the detector versus position.
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Figure 3: Histograms of first (a) and second (b) DUT events after trigger.
These data sets are the two largest components making up the results of Fig.
1a. The reduced (and falling) background to the right of the peak in the upper
panel results from the decreasing likelihood of a first event as earlier first events
accumulate.

4 Tardy Detection Events and Increased After-

pulse Probability

Looking at the correlated response function, c(τ), in Fig. 1c, one might wonder
about the origin of the small shoulder to the right of the main peak. Figure
2a shows a closeup of the shoulder. It turns out that this shoulder accounts
for more than 1% of the total signal which is significant for a high-precision
calibration. Therefore it is important to understand and treat these ‘tardy’
events correctly. A first guess might be that these events are due to photons
that strike the outside rim of the active area of our APD where it is slower
to respond, as edge effects often result in timing anomalies. To measure this
effect, we focused the DUT light to a tight spot and scanned it across the APD
(see Fig. 2b). We found that the ‘rim’ detections do indeed experience an extra
delay. However, the detector response is delayed by no more than an additional
≈ 2 ns relative to the delays of events caused by photons closer to the center
of the active area. Thus, this extra delay is not sufficiently long to produce the
shoulder observed in Fig. 1c.
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To get more information about these tardy pulses, we separated the his-
togram events by the order in which they were received after the trigger (i.e.
the first event after a trigger, the second event after the trigger, etc.). Figure 3a
shows the distribution of first events, and Fig. 3b shows the distribution of sec-
ond events. As would be expected, the main coincidence peak consists primarily
of first events, and the afterpulse peak is composed of second events. Note that
the shoulder of tardy coincidence events (located at 57–62 ns) also consists of
second DUT events. Since the DUT deadtime is ≈ 42 ns, this means that the
tardy coincidence events were registered right after the detector had recovered
from a previous avalanche recorded during the first 15–20 ns of the histogram.
The first avalanche in this case is due to a background (as opposed to a corre-
lated) event. This suggests that the timing of DUT pulses can be influenced by
previous detection events (if they were recent enough). We now consider how
the detector reacts when it receives a photon during its recovery period.

It turns out that the afterpulse probability is not a constant, but can depend
on the background rate. This can be explained in terms of the active quenching
circuitry of the detector. After a detection event, the active quench circuit
of the DUT lowers the APD bias voltage to just below breakdown. After this
quench period, the circuit raises the bias back to its original value. At this point
the APD can avalanche again, and sometimes does so spontaneously causing
an ‘afterpulse’. However, if the detector receives a photon during the time
of rising bias, it significantly enhances the probability that the detector will
avalanche once the bias returns to its higher value. For higher background
rates, it is more likely that a photon will strike the detector during this reset
phase and thus increase the likelihood of afterpulses. This is why the probability
of getting an afterpulse shown in Fig. 1(c) is significantly higher than expected
from the APD specification of 0.3%. Interestingly, these ‘twilight’ pulses, which
are triggered by photons arrived during the last moments of the deadtime, are
delayed, sometimes significantly, as compared with ‘normal’ detections.

To demonstrate this effect, we sent pairs of optical pulses separated by a
delay to an APD module and fed the output of the module to a time digitizing
circuit. If the first pulse registered in the detector, it would start a histogram
scan. If the detector produced a second pulse, it would stop the scan. In Fig. 4
we show a number of histograms for varying delay times between the two optical
pulses. (The APD used for this measurement has a deadtime of 49.5 ns. This
is different from the APD used in Figs. 1 to 3.) We find that if the photon
comes during first ≈ 40 ns of the deadtime, i.e. while the active quench circuit
has the bias below breakdown, it has no effect on the afterpulse. In such case,
the afterpulse has a bimodal shape shown by the thick black line in Fig. 4a
(previously observed in Ref. [17]). If the two light pulses are separated by more
than ≈ 40 ns, so the second pulse arrives while the APD bias was rising back
above breakdown, the probability of an afterpulse is increased and we see a
distinct new peak in the afterpulse shape, which can be delayed by up to 10
ns from the time the APD would normally generate a TTL pulse. The data
shows that the closer the photon arrival time is to the end of the dead zone, the
shorter the observed delay (see the upper curve in Fig. 4). It is the spread in
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Figure 4: High time resolution histograms of afterpulse feature (cf. D of
Fig. 1(a)) taken with photons arriving with a range of delays after register-
ing a previous photon taken with two APD systems. One APD system with
(a) unmodified and one with (b) modified circuitry. Thick line in (a) shows the
afterpulse feature with no second photon received during the histogram. Peaks
(thin lines and right axis) show histogram counts due to second photon arriving
in the time region when the detector is recovering from previous pulse. Upper
curves (dots and left axis) show the time of the pulse output versus the output
time of a pulse when the detector is not recovering from a recent detection.
Undelayed or prompt output would fall on the dashed line. Tardiness is indi-
cated by the difference between the data and the dashed line. For the modified
circuit (b) all ‘twilight’ pulses are emitted at the same time in the reset cycle,
while with the unmodified circuit (a) the emission times vary nonmonotonically
with when the photon was received. For this figure only, an APD with 49.5 ns
deadtime was used.
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these delays that sets the width of the shoulder feature of Figs. 1 to 3.
Interestingly, this feature of the detector can be eliminated with a different

detection circuit. [18] We tested a detector with a modified avalanche detection
circuit and found that it significantly reduced the late arrival features. With
that circuit, in Fig. 4 (b) we see the bimodal afterpulse shape has collapsed
to a single peak which is consistent with the flat output time line for those
photons received during the twilight period. This results in the reduction of
tardy events as can be seen in Figure 2 (a) which compares a histogram taken
with the modified detector circuit, and one taken with the original active quench
circuit.

5 Conclusion

We have illustrated how to accurately handle correlated histogram data in cal-
ibration situations with a high probability of getting a correlated photon in a
scan, and also a non-negligible background rate in the presence of deadtime. We
also illustrated how other phenomena, such as enhanced detector afterpulsing
(and the associated tardy detector output) are due to a high background rate.
While these effects are small, they are important to consider when doing high
accuracy calibrations of single-photon-counting detectors. While one may de-
fine a detection efficiency as the ideal probability of a live detector producing a
count (and only one count) due to a single incident photon, actual implementa-
tions are not so clean. In particular, we point out that due to deadtime, tardy,
and afterpulse effects, the effective detection efficiency of a photon-counting de-
tector is time and history dependent and the final result is an average over a
specific set of conditions. So in cases where a high accuracy overall detection ef-
ficiency is required, it is important to understand exactly what those calibration
conditions are and how to apply that result in other situations.

This work was supported in part by the Disruptive Technology Office (DTO)
under Army Research Office (ARO) contract number DAAD19-03-1-0199, and
DARPA/QUIST.
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