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Abstract: We report a prediction for the delay measured in an optical
tunneling experiment using Hong–Ou–Mandel (HOM) interference, taking
into account the Goos-Hänchen shift generalized to frustrated total internal
reflection situations. We precisely state assumptions under which the
tunneling delay measured by an HOM interferometer can be calculated.
We show that, under these assumptions, the measured delay is the group
delay, and that it is apparently ‘superluminal’ for sufficiently thick air
gaps. We also show how an HOM signal with multiple minima can be
obtained, and that the shape of such a signal is not appreciably affected by
the presence of the optical tunneling zone, thus ruling out the explanation
of the anomalously short tunneling delays in terms of a reshaping of the
wavepacket as it goes through the tunneling zone. Finally, we compare the
predicted tunneling delay to a relevant classical delay and conclude that our
predictions involve no non–causal effect.
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The experimental measurement of the delay associated with quantum tunneling, as well as its
theoretical definition and physical interpretation, have been the subject of much controversy.
Numerous definitions have been proposed [1], and various experiments performed [2,3] as part
of an effort to remove this ambiguity. A recurrent feature of both predictions and measurements
is that quantum tunneling is associated with seemingly ‘superluminal’ delays, i.e. delays that
appear to correspond to velocities greater than that of light in vacuum (see [4] for a detailed
report on the different experiments and their interpretations).

In this work, we make use of the analogy between one–dimensional quantum tunneling and
two–dimensional optical systems involving frustrated total internal reflection, in the particular
case of the experiment initially proposed by Chiao et al. [5]. They suggested using Hong–
Ou–Mandel (HOM) two–photon interference [6] to measure the optical tunneling delays in the
photon counting regime, which are on the fs time scale. We present, for this experiment, an
explicit derivation of both the Goos-Hänchen shift and the delay measured by HOM interfer-
ence. Analytic formulae are derived for simple cases; however, our derivation, which relies on
the expansion of the incident beam as a linear combination of plane waves, is more general
and can be applied numerically in more complicated situations. We specifically show that the
anomalously short tunneling delays cannot be explained by the suppression of the later part of
the HOM signal (reshaping). Finally, we show that, in the regime for which our calculations are
valid, the classical delay to which our prediction for the tunneling delay should be compared is
shorter than this prediction, and thus no non–causal effect is involved in this experiment.

The optical tunneling zone consists of two identical glass prisms (index of refraction n≈ 1.5)
facing each other, separated by a gap of air (index 1) of adjustable width d on the μm scale.

HOM interference is a two–photon interference effect: if two indistinguishable photons arrive
simultaneously at the input ports of a beamsplitter, a destructive interference occurs which
forbids the photons to exit through different output ports. This interference effect makes it
possible to compare the optical lengths of the two arms of the interferometer, one of which is
known and the other containing the tunneling zone (see Fig. 1): for equal optical delays, no
photon–coincidence detections are recorded at the output ports 3 and 4 of the beamsplitter as
the two photons cannot exit different ports.

The proposed experiment is to be conducted in the following way. Pairs of correlated pho-
tons are created by spontaneous parametric downconversion in a non–linear crystal [7]. They
are injected into single–mode optical fibers in order for the photons to be prepared in a spe-
cific single spatial mode. One photon of each pair, the ‘unknown’ photon, travels through the
tunneling zone, hitting the glass–to–air interface with an angle greater than the critical refrac-
tion angle θc = arcsin 1

n , and thus having a small probability to undergo optical tunneling. The
second, ‘reference’, photon, travels through an adjustable delay line. They are subsequently
brought together at a symmetrical beamsplitter at which HOM interference occurs (Fig. 1).
First, the two prisms will be brought together (d = 0) and the length of the ‘reference’ arm will
be set to the value leading to HOM interference. We will then give d a non–zero value. The
delay between the two photons is measured as the increase in the delay line length necessary to
recover the destructive interference.

We characterise the tunneling zone by its amplitude transmission coefficient t G, which we
have derived for an s–polarized plane wave. This coefficient can be calculated for an evanescent
wave with incidence angle θ (θ > θc) in a similar way as for a Fabry–Pérot cavity with a
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Fig. 1. Left: experimental setup. Inset: schematics of the tunneling zone and the incident,
reflected and transmitted beams, taking the generalized Goos–Hänchen shift into account.
Note that the width of the air gap, the size of the prisms, and the waist of the beam are not
to scale.

propagating wave:

tG =
(

cosh(d/z0)− isinh(d/z0)
1+n2 cos(2θ )

2nκ cosθ

)−1

(1)

where z0 = 1
2π

λ
κ , κ =

√
n2 sin2 θ −1, and λ is the wavelength in vacuum of the incident plane

wave.
We consider the case of a monochromatic Gaussian incident beam, whose wavelength λ i is

in the visible range and whose waist w0 is on the mm scale, impinging on the air gap with
incidence angle θi. The evanescent nature of the field inside the gap yields relevant effects only
for values of the gap width d which are greater than the characteristic attenuation length z 0 of
these evanescent waves. Additionally, we assume w0 � d/κ , which ensures that the amplitude
attenuation of a plane wave crossing the air gap with incidence angle θ ≈ θ i is approximately
constant over the angular dispersion Δθ = λ

w0
of the Gaussian beam. This last assumption,

which corresponds to a realistic experimental situation, is essential, and all of the results sub-
sequently presented in this work rely on it. In particular, it is under this assumption that we
show that the tunneling delay corresponds to the group delay, and that for sufficiently large gap
widths this group delay, which does not depend on w 0, becomes apparently ‘superluminal’. We
are then able to explain why such a short delay is not associated with any non–causal effect. We
have not investigated the regime for which this assumption does not hold. Indeed, a transverse
distortion of the incident beam as it crosses the tunneling zone would make it much harder to
define or measure the tunneling delay.

Our prediction for the optical tunneling delay is qualitatively modified by a spatial shift Δx T ,
along the second glass–to–air interface, of the centroid of the transmitted beam with respect
to that of the incident beam [8] (cf. Fig. 1). This effect is due to the evanescent nature of the
waves inside the air gap. It is known as the Goos–Hänchen (GH) shift in total internal reflection
situations [9], and it can be generalized to include frustrated total internal reflection (FTIR).

We consider the incident Gaussian beam as a sum of plane waves and apply the transmission
coefficient tG(kkk) to each plane–wave component. The resulting integral can be evaluated, in
the paraxial approximation, using the method of stationary phase, which yields the following

analytical expression: ΔxT = − λi
2πn

1
cosθi

d(argtG)
dθ

∣∣∣
θ=θi

. Incidentally, the relative phase between

the transmission and reflection coefficients is constant, therefore the reflected beam is also
shifted, by the same amount. The magnitude of this shift is plotted as a function of the gap
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Fig. 2. Magnitude of the Goos-Hänchen shift on the transmitted beam ΔxT as a function
of the gap width d, for incident wavelength λi = 702nm in vacuum, incidence angle θi =
41.9◦, and prism glass index n = 1.5.

width in Fig. 2. For large values of d, this shift saturates to λi
2πn

1
cosθi

2√
1− 1

n2 sin2 θi

which is the

value predicted for the shift in the reflected beam in a non–frustrated situation [9].
This generalized GH shift is of the order of the wavelength λ i, i.e. on the μm scale. Realistic

values for the width d of the air gap, chosen such that intensity transmission through the tun-
neling zone is finite (albeit small), are of the same magnitude. Consequently, the GH shift has
to be taken into account to predict the delay measured using the HOM interferometer.

We now calculate the tunneling delay measured in this experiment, assuming the quan-
tized electromagnetic field produced by the correlated photon source is given by |ψ 〉 =
M |vac〉1 |vac〉2 + η ∑u e−u2/4σ 2 |ωi +u〉1 |ωi −u〉2, where ωi = 2π c

λi
, σ characterises the

spectral width of the source, ωi +u and ωi −u are the frequencies of the two photons of a given
correlated photon pair, and η is the efficiency of the parametric downconversion process [10].
The positive–frequency field operators at entrance ports 1 and 2 of the beamsplitter can be
expressed as ⎧⎪⎨

⎪⎩
EEE(+)

111 = ∑
ω

a1(ω)e−iω(t−τ1)

EEE(+)
222 = ∑

ω
tG(ω)a2(ω)e−iω(t−τ2)eikxxF

(2)

where xF is the position on the (second) air–glass interface corresponding to the position of the
fiber–collimator on the output side of the second cube (cf. Fig. 1), and cτ = cτ 1 − cτ2 is the
difference in optical lengths between the ‘unknown’ and ‘reference’ arms of the interferometer,
excluding the actual air gap. Considering the ideal case of a symmetrical beamsplitter, the field

operators at exit ports 3 and 4 are given by EEE(+)
3,4 = EEE(+)

111 ±EEE(+)
222 . The photon–coincidence signal

S0(t0) =
∫

dt 〈ψ |EEE(−)
333 (t0)EEE

(−)
444 (t0 + t)EEE(+)

444 (t0 + t)EEE(+)
333 (t0) |ψ 〉, integrated over the resolving

time of the detectors, reduces to:

S =
∫ +∞

−∞
due−u2/2σ 2 [|tG(ωi +u)|2 −Re(tG(ωi +u)t∗G(ωi −u)e−2iuτ)

]
. (3)

We have numerically calculated the photon–coincidence signal directly from Eq. 3 (cf. the
single HOM dips in Fig. 4). Such a numerical calculation is possible in the general case. Fur-
thermore, if the spectral bandwidth σ of the source is sufficiently narrow, the preceding integral
can be calculated using the approximation of stationary phase. We thus obtain:

S0 ∝ |tG(ωi)|2
(

1− e−2σ 2(τ−μ)2
)

(4)
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Fig. 3. Predicted delay μ as a function of the gap width d, calculated for incident wave-
length λi = 702nm in vacuum, incidence angle θi = 41.9◦, and prism glass index n = 1.5.

where μ = ∂ argt
∂ω

∣∣∣
ωi,θi

+ xF
c nsinθi. The value of μ is the displacement, on the plot of S0(τ) ,

of the minimum of the HOM dip with respect to its position when there is no air gap (t G = 1).
Therefore, it can be interpreted as a measurement of the delay of the photons crossing the gap.
The expression for this delay depends on xF , however it is only meaningful if the collecting
fiber–collimator is positioned at the point where the transmitted beam is expected to exit the
second cube, taking the generalized Goos–Hänchen shift into account: x F = ΔxT. One thus
obtains the following prediction for the tunneling delay measured in this experiment:

μ =
∂ (arg tG)

∂ω

∣∣∣∣
ω=ωi

− 1
ωi

tanθi
∂ argtG

∂θi

∣∣∣∣
θ=θi

. (5)

This expression for μ involves the derivative of the gap transmission function with respect to
frequency, and therefore corresponds to the group–delay. Our calculation thus provides theoret-
ical grounds for Steinberg et al.’s experimental measurement, using an HOM interferometer, of
the delay due to tunneling through a 1D photonic band–gap barrier, which they found to agree
with the group–delay prediction [3].

The dependence of μ on the thickness d of the air gap is represented in Fig. 3, where it is
compared to d/c, the shortest possible delay required to cross the air gap at the speed of light.
Our prediction for the delay is greater than d/c for small values of d; however, it becomes
smaller than d/c, and therefore apparently superluminal, for greater values of d. It saturates
to a finite value for large values of d [8]. This behaviour is qualitatively similar to Hartman’s
prediction for the one–dimensional tunneling time of a massive particle [11].

The method we present can be applied to realistic wavepackets with no restriction on their
bandwidth σ , and it allows the calculation of more elaborate two–photon coincidence signals
than the single HOM dip. This allows us to investigate whether or not the shape of the coin-
cidence signal is appreciably distorted by the tunneling zone. Were the coincidence signal to
undergo a significant reshaping as it crossed the air gap, one might argue that the predicted
superluminal delay of the wavepacket peak was simply an artifact of this reshaping.

We will first consider the tunneling of a realistic wavepacket numerically. As is shown in
Fig. 4 (curves with single minima), tunneling slightly decreases the HOM contrast (S max −
Smin)/Smax, and leaves the shape of the dip intact. This suggests that tunneling does affect the
shape of the wavepacket, making the photon that has tunneled “different” from the one that has
not. To understand if such a change has the same nature as “reshaping” (where the trailing edge
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Fig. 4. Left: Coincidence signals with one (red) and two (green) minima, calculated for
d = 10μm, λi = 702nm, σ = 20nm, tW(ωi +u) = 0.4+0.6cos(τ0 u)+0.7sin(τ0 u/2), and
τ0 = 2/σ , both without the tunneling zone (solid lines) — adding the delay d/c (shortest
possible delay required to cross the gap) — and with the tunneling zone (dashed lines).
The numbers of coincidence counts are normalized to 1 in the non–interfering region; for
large values of τ , the ratio between the numbers of counts with and without the air gap is
≈ |tG(ωi,d)|2 = 10−6. The signals presented here are the exact numerical results obtained
from Eq. 3, hence the contrasts of the incident and transmitted signals are not exactly the
same, as they would have been in the stationary phase approximation. Right: Combination
of beamsplitters and delay lines that can be used to produce the transmission function tw.
The transmission and reflection coefficients tk and rk characterising the beamsplitters, the
phase shifts φk, and the optical delays Lk are chosen such that the interference between the
five paths of the optical circuit yields an overall transmission which is proportional to tw.

of the incident wavepacket is suppressed compared to the leading edge as it undergoes optical
tunneling [4]), we study the more complex case of a photon–coincidence signal which has two
minima when there is no tunneling zone. We suggest to generate such a signal by adding, to
one arm of the correlated photon source, a combination of beamsplitters and delay–lines whose

overall transmission function is tW(ωi + u) =
(
a+bcos(τ0 u)+ csin( τ0

2 u)
)

ei
τ0
2 u (cf. Fig. 4).

The corresponding photon–coincidence signal can be numerically calculated from Eq. 3 in
which tG(ω) is replaced by tG(ω) · tW (ω). We have performed this calculation both without
the tunneling zone (tG = 1) and with the tunneling zone (tG given by Eq. 1). These signals are
represented in Fig. 4. Both exhibit two dips, whose contrast and relative separation in time are
affected by the presence of the air gap in the same two–fold way as in the case of a wavepacket
with a single peak: the air gap causes (i) an important drop in the transmitted intensity (which
is an exponentially decaying function of d), and (ii) a time delay, which corresponds to μ as
calculated previously for the single–dipped coincidence signal (cf. Eq. 5 and Fig. 3).

The shape of the photon–coincidence signal not being affected by the presence of the air
gap indicates that the shape of a wavepacket having undergone FTIR depends on the whole
wavepacket incident on the tunneling zone. Indeed, if the tunneling zone only allowed the
transmission of the earlier part of the incident wavepacket and rejected the later part, a photon–
coincidence signal which has two minima in the absence of the tunneling zone would have only
one in the presence of the tunneling zone. Figure 4 shows this is not the case: the interference
signal which has two HOM dips in the absence of the tunneling zone retains two dips in the
presence of the tunneling zone. This result confirms that it is not possible to explain the anom-
alously short tunneling delays in terms of a reshaping of the HOM signal [4]. Our calculation
is valid regardless of the temporal width of the pulse. Specifically, it does not require the tun-
neling to be in a quasi-static regime as defined by Winful [4]: indeed, in the case of Fig. 4, the
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temporal width of the coincidence signal is comparable to the width of the air gap, yet there is
no change in the shape of the HOM signal.

If the peak intensity transmitted through the tunneling barrier were much greater than the
intensity in the leading edge of an initially identical wavepacket propagating at the speed of
light [4], one could claim that a non-causal behaviour were observed. Increasing the width
of the gap causes the global intensity attenuation to increase, but it does not affect the range
of frequencies of the waves which undergo tunneling (stop–band of the tunneling barrier). In
the case of FTIR, the global transmitted intensity decays as e−2d/z0 with increasing and large
gap widths d, whereas the intensity that arrives at a time d/c before the peak of the pulse
decreases as e−2σ 2d2/c2

. For very large gap widths, the preceding criterion would be satisfied,
thus apparently making it possible to observe a non–causal effect. This is of course not the case,
and this erroneous conclusion reveals the limit of the analogy between true one–dimensional
tunneling and FTIR: in the large gap–width regime, the two–dimensional nature of FTIR must
be taken into account.

A key feature of FTIR, which is related to the fact that there is no real propagation of light in
the gap, is that Fermat’s principle cannot be applied because no path linking the input wavefront
to the output one achieves a local minimum of the propagation time. Indeed, as is shown in
Fig. 5, the optical path length of the ray-optics trajectory displaced a distance h away from the
centroid of the incident Gaussian beam is smaller than the one corresponding to the centroid
by an amount of the order of κh for h � d. The upper part of the beam thus contributes to the
field at xF earlier than the part of the beam in the vicinity of the centroid does. Consequently,
the spatial width of the beam results in an effective temporal width κ w0

c .
One of the assumptions for the calculation of the group delay presented above (which exhibits

a saturation for large gap widths) is that the spatial shape of the transmitted beam is not modified
by the barrier traversal, which translates as w0 � d/κ . Therefore, the effective temporal width
κ w0

c must be much larger than d/c for our calculation to be valid. The preceding condition
replaces, in the case of 2D FTIR, the quasi-static condition for 1D tunneling [4].

The upper part of the incident beam that is farther away from the centroid than h 0 ∼ d/κ ,
following a virtual classical trajectory as represented on Fig. 5, contributes to the field at x F

earlier than the calculated tunneling time. In the regime for which our calculations are valid
(d > z0 and w0 � d/κ), the total contribution to the intensity of the h � h 0 part of the incident
beam is of the order of e−2d2/(κ2w2

0). This fraction of the incident intensity is larger than the
attenuation (of the order of e−2d/z0) due to the air gap. Therefore, no non-causal effect can be
observed in this FTIR experiment and the anomalously short tunneling times can be considered
to be due to the contribution of the spatial ‘wings’ of the incident Gaussian beam.

We have reported a prediction for the delay due to optical tunneling as measured by an HOM
interferometer. We have performed exact numerical calculations of the HOM interference sig-
nals with and without the tunneling zone, taking into account the Goos–Hänchen shift general-
ized to frustrated total internal reflection situations. We have derived an analytical expression
for the tunneling delay measured in this particular experiment, which corresponds to the group–
delay prediction. We have also shown that this delay is not due to a reshaping of the wavepacket
as it crosses the tunneling zone, and that it exhibits a saturation with increasing gap widths. We
did see that the contrast of the HOM dip decreases when the stationary phase approximation is
dropped, indicating that FTIR tunneling distorts the wavepacket. Our analysis of the tunneling
time in terms of the group delay relies on the assumption that the incident Gaussian beam has a
sufficiently large waist. Under this assumption, we have shown that the relevant classical delay
to which our prediction for the optical tunneling delay must be compared is shorter than this
prediction, thus ruling out superluminal effects in this experiment.
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Fig. 5. Ray optics trajectory between a reference wavefront before the first prism and an-
other wavefront in the second prism, which is shorter than our prediction for the tunneling
delay. If the waist w0 of the incident beam is large enough, the distance h of this trajec-
tory to the centroid is such that the corresponding intensity is comparable to that of the
transmitted beam.
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