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We present a scheme for a photon-counting detection system that can be operated at incident photon rates higher than otherwise possible
by suppressing the effects of detector deadtime. The method uses an array of N detectors and a 1-by-N optical switch with a control
circuit to direct input light to live detectors. Our calculations and models highlight the advantages of the technique. In particular, using
this scheme, a group of N detectors provides an improvement in operation rate that can exceed the improvement that would be obtained
by a single detector with deadtime reduced by 1/N, even if it were feasible to produce a single detector with such a large improvement
in deadtime. We model the system for continuous and pulsed light sources, both of which are important for quantum metrology and
quantum key distribution applications.

1 Introduction

There is a long history of low light level measurement applications, such as astronomy and particle physics,
with demanding detector requirements. While these applications have provided a steady motivation for
detector improvement, the growing interest and advancing efforts in quantum information have brought
into sharper focus the need for better photon-counting detectors [1].

Quantum communication and quantum computation applications place difficult design requirements on
the manipulation and processing of single photons [2]. Quantum cryptography [3] would particularly benefit
from improved detectors, as that application in the form of Quantum Key Distribution (QKD), is currently
significantly limited by detector characteristics such as detection efficiency, dark count rate, timing jitter,
and deadtime [4]. Because of demands for higher-rate secret key production, the quantum information
community is presently engaged in a number of efforts aimed at improving QKD, including optimizing
the quantum channels for minimum loss [5, 6], improving detector efficiency [2, 7, 8], reducing detector
timing jitter [9], reducing detector deadtime [10], and single-mode single-photon source engineering [11–17].
Moreover, with the exponential growth in multimode parametric downconversion (PDC) photon pair
production rates now in the range of 2x106 s−1 [18] and the more recent development of χ(3) single-
mode fiber-based sources with pair rates up to 107 s−1 [16,17], the need is clear for better photon-counting
detection by all means possible, including improved deadtime. Addressing that need for counting at high
rates by reducing deadtime is our aim here.

Furthermore, in the area of metrology, high-speed detection capability could allow the calibration of a
very bright single-photon source that in the long term could be a viatic toward a radiometric standard
yielding a “quantum candela” [19]. Additional motivation for the deadtime reduction scheme presented
here, is the improvement of traditional detection applications such as medical diagnosis, bioluminescence,
chemical, and material analyses [20–23].

This idea of reducing deadtime via a multiplexed detector array is an extension of the well established
principle of multiplexing many individual, but imperfect, components into a system that operates with
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characteristics much closer to the ideal. An example in the field of single-photon technology is the multi-
plexed single-photon PDC source [24]. In electronics, a more ubiquitous example of this principle would be
a computer memory chip or a disk drive where system control bypasses dead or defective subunits. This
proposed method is also becoming more feasible given the current trends toward integrated microchip
arrays of optical sources and detectors, some of which are now becoming more readily available [20–22].

We present a scheme that can achieve higher detection rates than is otherwise possible by reducing the
effect of detector deadtime. Deadtime is the time needed after a photon-counting detector fires for the
detector to recover so that it is ready to register a new photon. This recovery time may be due to the
detector, the processing electronics, or some combination of the two. Photomultiplier tubes (PMTs) are a
case where the detector deadtime can be quite short, and the subsequent electronics often ultimately set the
overall detection deadtime. In avalanche photodiodes (APDs) however, it is more difficult to neatly separate
deadtime due to “detection” and deadtime due to “electronics.” In an APD, the current avalanche must be
physically quenched before the detector is ready for another photon, resulting in a minimum deadtime of
typically a few tens of ns. In addition, APDs suffer from afterpulsing that requires an additional wait time
before reactivating the detector to avoid a secondary output pulse caused by the previous photon event.
In typical APD devices, the resulting deadtimes range from ≈50 ns for actively quenched APDs to ≈10 µs
for passively quenched APDs, although even actively quenched APDs sometimes employ µs deadtimes to
avoid excessive afterpulsing rates. (PMTs also can suffer from afterpulsing, but modern PMTs typically
exhibit afterpulsing at much lower rates than APDs [25].)

In practice, detectors are usually operated at detection rates much lower than the inverse of the deadtime
to avoid high deadtime fractions and the associated large deadtime corrections. The deadtime fraction
(DTF) may be defined as the ratio of missed- to incident-events. Alternately, in the case of a Poissonian
CW source, it may be defined as the fraction of the time the detector spends in its recovery state (where
it is effectively blind to incoming photons) to the total elapsed time. A DTF of 10 % is often a reasonable
limit for detector operation. The result is that while many applications would benefit from tens of MHz to
GHz detection rates, the reality is that detectors are in practice limited to ∼ 1 MHz rates at best. Clearly
a way to increase detection rates is needed.

Our scheme to improve detection rates takes a pool of photon-counting detectors and operates them
as a unit, or a “detection resource,” in a way that allows overall photon detection at higher rates than
would be possible if the detectors were operated individually, while maintaining comparable DTFs. We
model and numerically analyze the scheme for typical detector deadtimes, and show the superiority of the
scheme for both CW- and pulsed-sources over hypothetical single detectors with much improved deadtimes.
We also note that our scheme bears some resemblance to schemes using beamsplitter trees and detector
arrays [26–28]. We compare the proposed scheme DTFs to those tree schemes, as well as to the performance
of a single detector with much reduced deadtime.

2 Scheme

The detection scheme relies on the rather obvious fact that, while a detector has a significant deadtime
when it does fire, it has no deadtime when it does not fire. The scheme consists of a 1-by-N optical switch
that takes a single input stream of photons and distributes them to members of an array of N detectors.
A switch control circuit monitors which detectors have fired recently and are thus dead, and then routes
subsequent incoming pulses to a detector that is ready. As we will see, this system allows a system of N

detectors to be operated at a significantly higher detection rate than N times the detection rate of an
individual detector, while maintaining the same DTF.

To understand the process consider a fixed input photon pulse rate, some pulses of which may contain
a photon and some may not. (For example, this is usually the situation in a quantum cryptography
application.) At the start of operation all detectors are live and ready to detect a photon. The optical
switch is set to direct the first incoming pulse to the first detector of the array. Control electronics monitor
the output of that detector to determine if it fires. If the detector does fire, the control switches the next
pulse to the next detector. If the detector does not fire, then the switch state remains unchanged. The
process repeats with the input always directed to the first available live detector. At high count rates many
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Figure 1. A pool of detectors and a fast switch are used to register a high rate of incoming photons. Incoming photons are switched to
a ready detector. If it fires, the detector is switched out of the ready pool until recovery. If it does not fire, that detector remains ready.

of the detectors may fire in a short period of time and subsequently be in their dead state, but as long as
the first detector recovers to its live state before the last detector triggers, the system will still be live and
ready to register an incoming photon. The system will only be dead when all detectors have fired within
one deadtime of each other. The system operation could be sequential with each detector firing in order as
just described, or it could be set up to direct the input to any live detector. This would allow for optimum
use of an array of detectors where each detector may have a different deadtime.

3 Analysis and models

To understand the multiplexed system’s operation and quantify its advantages relative to non-multiplexed
systems, we use approximate analytical and numerical Monte Carlo models, both for the cases of a cw
Poisson distributed- and a pulsed-source.

3.1 CW (Poisson) source: analytical modeling

Our analytical calculation estimates the DTF from the mean total count rate of the overall detector pool
and the effective deadtimes for each detector (which depend on their position in the switching system). We
consider a Poissonian source and a pool of detectors with the identical detection efficiencies η and identical
non-extending deadtimes Td (meaning that all photons following a detected photon within a fixed time
interval Td are ignored) [29]. Zero switch transition time is assumed. (We refer to a Poissonian source as
cw because, while the photons arrive at discrete times, they have equal probability to arrive at any time.)
Furthermore, the optical switch is programmed to send photons to the detectors in sequence. The switch
always sends photons to detector 1 (D1) when it is live. If D1 is dead, it sends the photons to D2, and so
on.

The probability that n photons from a Poissonian source with mean photon rate λ are registered by
a single live detector with efficiency η in a time interval T is P (n) = (ηλT )ne−ηλT /n!. Thus the mean
number of counts registered is ηλT . From here on for simplicity we assume η = 1. (We can do this without
loss of generality, as η and λ always appear together and can thus be traded off against each other without
affecting the ultimate results.) In the presence of deadtime Td and for measurement time T � Td, the



mean number of counts registered reduces to

M = λT − MλTd, (1)

where MλTd accounts for the mean number of photons lost to deadtime. Rearranging, we have

M =
λT

1 + λTd
. (2)

The DTF, defined as the ratio of the lost counts to the total counts in the absence of dead time, for this
simple case is

DTF =
λT − M

λT
= 1 −

1

1 + λTd
. (3)

Now consider an array of detectors connected to an optical switch (Fig. 1) with switching time negligible
with respect to Td. Eq. (2) holds for D1, so the mean number of counts detected by D1 is M1 = λT

1+λTd
,

while D1 is dead during a time interval T2 = M1Td. Thus the time interval during which D2 may count
photons is T2

1. Continuing the analogy with Eq. (2), the mean number of counts detected by D2 is

M2 =
λT2

1 + λTd(2)
, (4)

where here Td(2) is the effective deadtime associated with D2. It is necessary to introduce an effective
deadtime because the measurement time T2 is not reduced by the full deadtime Td. Only part of the
deadtime of D2 will occur while D1 is dead, effectively reducing Td(2). We postpone the evaluation of
effective deadtimes. In analogy with the arguments leading to Eq. (2), D3 is live during the time interval
T3 = M2Td(2), corresponding to the time interval when both D1 and D2 are dead, and the mean number
of counts registered by D3 is

M3 =
λT3

1 + λTd(3)
, (5)

where Td(3) is the “effective” deadtime associated with D3. Likewise for detector Di, the measurement time

is Ti = Mi−1Td(i−1) and the mean count rate is Mi = λTi

1+λTd(i)
.

The mean number of counts registered by the multiplexed detector system with N detectors is Mtot =
M1 + M2 + ... + MN , and the overall system DTF = λT−Mtot

λT is

DTF = 1 −
1

1 + λTd

(

1 + λTd

1+λTd(2)
+

λ2TdTd(2)

(1+λTd(2))(1+λTd(3))
+ ...

+
λN−1TdTd(2)...Td(N−1)

(1+λTd(2))(1+λTd(3))...(1+λTd(N))

)

. (6)

We will compare Eq. (6) to the DTF obtainable by simply reducing Td of a single detector by a factor of
1/N with DTF=1− 1

1+λTd/N . We note also that this result is the same as could be obtained by an array of

N detectors with deadtime Td and passive switching such as may be implemented with a tree arrangement
of beam splitters. This result follows from the fact that, in such a tree, the incident rate at each detector
is λ/N .

We analyse the effective deadtime of D2 for two cases using Fig. 2. The top timeline indicates the arrival
times of photons. The 2nd and 3rd timelines indicate when D1 and D2 register counts and when they are

1We emphasize that despite the fact that the measurement time T2 is composed of separated time intervals, while T1 is a single time
interval, the source is Poissonian and this allows us to consider T2 as a continuous time interval in the evaluation of this approximated
mean count rate.
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Figure 2. The effective deadtime of D1. Case (a) the time interval between two subsequent counts of D1, ∆ > δ + Td,with δ the time
interval between the count of D1 and the subsequent photon counted by D2 during the deadtime of D1, and Td the single detector
deadtime. Case (b) ∆ < δ + Td. In this second case two terms, T1 and T2 contribute to the final deadtime. Dark shaded regions

represent the deadtime of the individual detectors.

dead (shaded regions). ∆ = t3− t1 is the time interval between the first photon counted by D1 and the first
one after its deadtime Td has expired. δ = t2 − t1 is the time interval between the first two photon arrivals
at times t1 and t2 (the first detected by D1 and the second by D2). Fig. 2 shows two possible situations.
In case (a), the time interval between two sequential counts of D1 (t1, t3) is larger than the time interval
between the count at t1 and the count at t2 plus Td the deadtime of D1, namely ∆ > δ + Td. In this case
the effective deadtime of the detector combination of D1 and D2, Td(2), is Td − δ. In case (b) the time
interval ∆ is shorter than δ + Td, thus two terms contribute to the effective deadtime, T1 = Td − δ and
T2 = Td + δ − ∆.

As we assumed that the arrival of photons at the array of detectors is Poissonian, the random variables
∆ and δ are statistically independent. The probability density function of the random variable ∆ is
f∆(∆) = λe−λ(∆−Td)Θ(∆ − Td), where Θ(x) = 1 for x > 0, and 0 otherwise. The probability density
function of the random variable δ is fδ(δ) = (λe−λδ/(1 − e−λTd))Θ(Td − δ).

The probability that situation (a) occurs is

pa =

∫

∆>δ+Td

f∆(∆)fδ(δ)d∆dδ, (7)

while the probability that situation (b) occurs is

pb =

∫

∆<δ+Td

f∆(∆)fδ(δ)d∆dδ. (8)

In case (a), the mean value of the effective deadtime is Ta = Td − Ea(δ) with

Ea(δ) =

∫

∆>δ+Td
δf∆(∆)fδ(δ)d∆dδ

∫

∆>δ+Td
f∆(∆)fδ(δ)d∆dδ

. (9)



In case (b), the mean value of the effective deadtime is Tb = 2Td − Eb(∆) with

Eb(∆) =

∫

∆<δ+Td
∆f∆(∆)fδ(δ)d∆dδ

∫

∆<δ+Td
f∆(∆)fδ(δ)d∆dδ

. (10)

The mean effective deadtime Td(2) = paTa + pbTb can be calculated as

Td(2) = Td −
1 − e−λTd

2λ
. (11)

We iterate the formula for the subsequent detectors obtaining a recursive expression for the effective

final deadtime, Td(i) = Td(i−1)−
1−e

−λTd(i−1)

2λ . The calculated results for DTF versus incident photon rate for
pools of up to 12 detectors are nearly identical to the Monte Carlo results shown in Fig. 3 and described
in the next section.

3.2 CW Source: Monte Carlo Modeling

The Monte Carlo model assumes a cw source with Poisson distributed incident photons at a range of
incident rates meant to describe the use of the system with a laser source. As mentioned before, we
can assume 100 % efficient collection and detection without loss of generality. The individual detector
deadtimes were set to 50 ns. The modeling procedure consisted of first using a random number generator
to simulate an input stream of a large number of photons with Poisson distributed arrival times. The
resulting photon list was then apportioned to the first detector by going through each photon time on the
list in sequence to see if it could have been detected by a single detector D1. That is, once a photon is
detected, any photons within one deadtime after that detected photon are skipped. A new list consisting
of the “skipped” photons was then apportioned to the second detector D2 using the same procedure as for
the first detector. This process was repeated for all N detectors. Those photons left after detector DN are
those that would be missed by the system and the ratio to the total number in the original photon list is
the deadtime fraction, as previously defined.

Figure 3a shows the resulting DTF versus mean incident photon rate for systems of varying numbers
of detectors. The Monte Carlo results (shown) and the analytical calculations (not shown) provide nearly
identical results. From the RDTF=10% points (defined as the incident photon rate at which the DTF=10%),
we see that for example, a system of 6 detectors can operate at 32 times the incident rate of a single detector
while maintaining 10 % deadtime. This is significantly more than just six times the single detector count
rate, the improvement possible with a passive switch arrangement, highlighting the power of the technique.
We also see that the multiplexed detector scheme has an advantage over simply reducing the deadtime of an
individual detector. Even reducing the deadtime by a factor of 10 (to 5 ns) would not allow improvements
equal to the system with 6 detectors with Td = 50 ns.

Figure 3b shows the dependence of RDTF=10% on the number of detectors in the system, which fits well
to a 2nd order polynomial. The origin of this behavior is due to the correction in the effective deadtime of
each detector of the pool, embedding a nonlinear dependence on the number of detectors, while the same
behavior is not present for a passive switch (or a tree of beamsplitters), as shown by its linear RDTF=10%

dependence on the number of detectors.
For complete modeling of this scheme other switch parameters such as switch losses, switching transi-

tion times, switch latency, maximum switching rates, and cross-talk between switch channels should be
included. Of these, switch loss is probably the most problematic, as commercially available ns switches have
losses ≈2-3 dB, although there are ongoing efforts to improve this. Also for detectors with microsecond
deadtimes, slower speed switches can be used where lower losses are easier to achieve. Loss affects only
the overall detection efficiency so it should not affect the functional behavior of the results presented here.
Switch transition and latency times should have effects similar to increasing the deadtime of the individual
detectors, as well as reducing overall detection efficiency. However, with some commercial switch transition
times being below 50 ps, that should not be a severe limit. These parameters will be the subject of further
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modeling, as they will be what ultimately limits how far this method can be pushed.

3.3 Pulsed source: analytical modeling

The detection scheme (Fig. 1) modeling with a pulsed source proceeds in similar fashion to the cw case,
and the formulas derived below are analogous to the cw results. Each pulse of the source may contain 0, 1
or more photons, but because the detectors here cannot distinguish between one or more photons, it has
only two output possibilities: it either fires or it does not. The probability that a live detector produces
a count (“event”) for an individual pulse is p. The probability that n events are counted by a single live
detector in a sequence of N = νT pulses (where ν is the repetition rate of the pulsed source, and T the
measurement time) is B(n|N , p) = N ![n!(N − n)!]−1pn(1 − p)N−n. From this, it can be shown that the
mean number of counts is pN and the mean count rate is pν. In the presence of deadtime, the detector is
dead for a certain number of pulses Nd = Int(νTd), where Int indicates the integer part. For measurement
time such that N � Nd, the mean number of counts reduces to

M = pN − M pNd, (12)

where pNd is the mean number of events lost during one deadtime. Thus, the mean number of counted
events is

M =
pN

1 + pNd
. (13)

Eq. (13) holds for the first detector D1, so the mean number of counts detected by D1 is M1 = pN
1+pNd

,
while D1 is dead for the average number of pulses in the measurement time N2 = M1Nd. Thus, the time
interval during which D2 may count photons is N2. Continuing the analogy with the cw case, the mean
number of counts detected by D2 is

M2 =
pN2

1 + pNd(2)
, (14)

where here Nd(2) is the mean number of pulses constituting the effective deadtime associated with D2. The
evaluation of the effective deadtimes is presented below. Thus, for Di, the average number of pulses in the
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measurement time is N(i) = Mi−1Nd(i−1) and the mean count rate is Mi = pNi

1+pNd(i)
.

The mean number of counts registered by the multiplexed detector system is Mtot = M1 +M2+ ...+MN ,
and the DTF= pN−Mtot

pN is

DTF = 1 −
1

1 + pNd

(

1 + pNd

1+pNd(2)
+

p2NdNd(2)

(1+pNd(2))(1+pNd(3))
+ ...

+
pN−1NdNd(2)...Nd(N−1)

(1+pNd(2))(1+pNd(3))...(1+pNd(N))

)

.

We note that if the number of the detectors in the multiplexed array is more than Nd + 1, all the events
will be detected and DTF will be always zero.

In the pulsed case, the advantage obtainable with a single detector with deadtime reduced of a factor
1/N is given by DTF= 1− 1

1+p Int(νTd/N) , while for the detector tree configuration the deadtime fraction is

DTF= 1− 1
1+pNd/N . Note that for the case of a single detector with reduced deadtime, when Td/N < 1/ν

then the DTF=0, while this is never the case for the detector tree configuration.
We analyze the effective deadtime of D2 for a pulsed source using Fig. 4 where the dashed vertical lines

represent empty pulses and the continuous vertical lines represent detection events. As with Fig. 2, the
D1 and D2 timelines indicate when D1 and D2 register a count and when they are dead (dark shaded
regions). n∆ is the number of pulses between the first photon counted by D1 and the subsequent one, after
its deadtime Nd. nδ is the number of pulses between the first two events, the first detected by D1 and the
second by D2. Fig. 5 shows two possible situations. In case (a), the time interval between two subsequent
counts of D1 is larger than the time interval between the first detected by D1 and the second by D2 (during
the deadtime of D1) plus the deadtime of the D2, namely n∆ ≥ nδ +Nd. In this case, the effective deadtime
of the detector combination of D1 and D2, Nd(2), is Nd − nδ. In case (b) the time interval n∆ is shorter
then nδ + Nd, thus two terms contribute to the effective deadtime, the effective deadtime, P1 = Nd − nδ

and P2 = Nd + nδ − n∆.
We consider the random variables n∆ and nδ to be statistically independent as there is no correlation

between pulses. The probability distribution of n∆ is P∆(n∆) = p(1 − p)n∆−Nd−1, with n∆ integer and
n∆ ≥ Nd + 1. The nδ probability distribution is Pδ(nδ) = p(1 − p)nδ−1[1 − (1 − p)Nd ]−1, with nδ integer
and 1 ≤ nδ ≤ Nd.



The probability that situation (a) (n∆ ≥ nδ + Nd) occurs is

pa =
Nd
∑

nδ=1

+∞
∑

n∆=nδ+Nd

P∆(n∆)Pδ(nδ), (15)

while the probability that situation (b) (n∆ < nδ + Nd) occurs is

pb =

Nd
∑

nδ=2

nδ+Nd−1
∑

n∆=Nd+1

P∆(n∆)Pδ(nδ). (16)

In case (a) the mean value of the effective the deadtime is Nd,a = Nd − Ea(nδ), with

Ea(nδ) =

∑Nd

nδ=1

∑+∞
n∆=nδ+Nd

nδP∆(n∆)Pδ(nδ)
∑Nd

nδ=1

∑+∞
n∆=nδ+Nd

P∆(n∆)Pδ(nδ)
. (17)

While in case (b) the mean value of the effective deadtime is Nd,b = 2Nd − Eb(n∆), with

Eb(n∆) =

∑Nd

nδ=2

∑nδ+Nd−1
n∆=Nd

n∆P∆(n∆)Pδ(nδ)
∑Nd

nδ=2

∑nδ=Nd−1
n∆=Nd

P∆(n∆)Pδ(nδ)
. (18)

The mean effective deadtime Nd(2) = paNd,a + pbNd,b can be calculated as

Nd(2) = Nd −
1 − (1 − p)Nd+1

(2 − p)p
. (19)

We iterate the formula for the following detectors obtaining a recursive expression for the effective final

deadtime, Nd(i) = Nd(i−1) −
1−(1−p)

Nd(i−1)+1

(2−p)p . The calculated results for DTF versus incident photon rate

for pools of up to 5 detectors are shown in Fig. 5. Monte Carlo results as described in the next section are
also shown.

3.4 Pulsed Source: Monte Carlo Modeling

The Monte Carlo model assumes a geometric distribution for the pulse arrival times as shown in Appendix
A. As mentioned before, the detectors cannot discriminate between one or more photons in a single pulse
and can fire at most once during a pulse, so the probability of detecting an event per pulse spans from 0
to 1. As in the cw case, a random number generator was used to simulate the source, although this time it
is a pulsed source with geometric distributed events. As before, the resulting event list is apportioned to
each detector in sequence to see if it could have been detected or if it is skipped by that detector. Those
events left after the N th detector are those that would be missed by the system, and the deadtime fraction
is the ratio to the total number in the original event list.

In Fig. 5 we show the DTF versus the probability of detection of an event per pulse p, for pools of up to 5
detectors each with 50 ns deadtime, for a pulsed source with a repetition rate of (a) 82 MHz (Nd = 4) and
of (b) 410 MHz ( Nd = 20). In Fig. 6 (a) we observe that, as expected, RDTF=10% reaches the repetition
rate (the maximum rate possible), as the DTF is 0 for this combination of rate and deadtime in the case
of a pool of five or more detectors.

To highlight the advantage of the multiplexed detector scheme, we compare the performance of the
multiplexed detector system to a single detector with 4x reduced deadtime of 12.5 ns. Fig. 6, also shows a
comparison of RDTF=10%, for a pulsed source with repetition rates of 82 MHz and 410 MHz, for a single
detector with reduced dead time, for the detector tree configuration, and for our scheme. Because RDTF=10%
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(b) 410 MHz. The single detector points in (a) and (b) are plotted versus 1/N reduction in Td.

increases quadratically with the number of detectors, the multiplexed configuration, even with just a few
detectors, provides better performance than the other configurations. In fact, only when the deadtime
of single detector is made shorter than the pulse separation time, can it achieve the same performance
as the multiplexed scheme. Furthermore we observe that, contrary to the CW case, in the pulsed case
a single detector with reduced dead time and the detector tree configuration presents different behavior.
The step-like behavior of the single detector with reduced dead time comes from the fact that the number
of pulses lost because of dead time is Nd = Int(νTd/N).



4 Conclusion

We have shown that a pool of N detectors with a controlled switch system can in principle be operated
at much higher incident photon rates than is otherwise possible either with a single detector with much
reduced deadtime, or an array of detectors with a passive switch system such as might be implemented
with by a tree of beamsplitters1. This advantage holds for both cw- and pulsed-sources. We note from a
practical view, that a multiplexed system may be easier to implement for a pulsed source, as the switching
time need only be smaller than the time separation between pulses.2

We also note that two factors are working to increase the relevance of this scheme - a) advancing quantum
information applications are increasing the need for higher performance detectors and, b) improving array
detectors and low-loss high-speed switches are making this scheme more practical. Moreover our scheme
could also be implemented with photon-number-resolving (PNR) detectors, as well as the non-photon-
number-resolving detectors typically used for “photon counting” and analyzed in this work. The advantage
of reduced deadtime, in combination with PNR detector array, would make for a very powerful detection
capability indeed.

This work was supported in part by the Disruptive Technology Office (DTO) under Army Research
Office (ARO) contract number DAAD19-03-1-0199, and DARPA/QUIST.

Appendix A: Pulsed process and geometric distribution

In analogy with Ref. [30], where the connection between the Poissonian process and the Poissonian proba-
bility distribution are described, we describe the connection between the pulsed process and the geometric
distribution. Consider a pulsed process, with probability p of detecting an event for each pulse. The prob-
ability of waiting n pulses before detecting an event is given by the geometric probability distribution

T (n) = p(1 − p)n−1. (A1)

The probability of waiting n pulses before detecting two events (meaning that the second event is
detected at the nth pulse) is

T2(n) = pB(1|n − 1, p), (A2)

and analogous arguments hold for the probability of waiting n pulses before detecting three, four, etc...
events. Thus in general the probability of waiting n pulses before detecting k−1 events is given by the
generalized geometric probability

Tk(n) = pB(k − 1|n − 1, p). (A3)

Thus the probability that there are more than k events in N pulses is P (m ≥ k Int N ) =
∑N

n=k Tk(n).

1This latter result is not too surprising as the schemes using beamsplitter trees and detector arrays were created to overcome the lack of
PNR capability of most photon-counting detectors [26–28]. In other words, they are designed to solve the problem of photons arriving at
exactly the same time rather than just arriving very close in time. While our scheme enhances RDTF=10%, it provides no PNR capability.
2We would like to make clear that while our model neglects switch transition time, as well as other unwanted features such as loss
and cross-talk, there are a number of situations where these assumptions are valid and the multiplexed detection scheme will provide
significant advantage. This is particularly the case in the IR where photon-counting APDs have significant afterpulsing requiring one
to wait microseconds before reactivating the detector. Also transition edge superconducting detectors which have microsecond or longer
deadtime would benefit from this multiplexed arrangement, particularly as these detectors can be implemented as arrays of ten or more
detectors. Switch loss would result in reduced efficiency which, while important, can be less critical than deadtime. As commercially
available optical switches can have switch times from ns to hundreds of ns (which are essentially negligible with respect to µs deadtime
of detectors), low (1.5 dB) insertion losses, and negligible cross talk (typically 30 dB), our assumptions can be considered appropriate.



The probability of exactly k events in N pulses is then

P (m ≥ k in N ) − P (m ≥ k + 1 in N ) =
N
∑

n=k

Tk(n) −
N
∑

n=k+1

Tk+1(n). (A4)

Ultimately we see that
∑N

n=k Tk(n) −
∑N

n=k+1 Tk+1(n) = B(k|N , p).
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