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ABSTRACT

As the quantum information field advances, the need for improved single-photon devices is becoming more
critical. Quantum information systems are often limited by detector deadtime to count rates of a few MHz,
at best. We present a multiplexed detection scheme that allows photon counting at higher rates than possible
with single detectors. The system uses an array of detectors and an optical switch system to direct incoming
photons to detectors known to be live. We model the system for realistic individual detector deadtimes and
optical switching times. We show that such a system offers more promise than simply reducing the deadtime
of an individual detector. We find that a system of N detectors with a given deadtime, can count photons at
faster rates than a single detector with a deadtime reduced by 1/N, even if it were practical to make such a large
improvement.
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1. INTRODUCTION

Quantum communication and quantum computation applications place difficult design requirements on the
manipulation and processing of single photons.1, 2 Quantum cryptography3 would particularly benefit from
improved detectors, as applications such as Quantum Key Distribution (QKD) are often constrained by detector
characteristics such as efficiency, dark count rate, timing jitter, and deadtime.4 Because of demands for higher-
rate secret key production, the quantum information community is presently engaged in a number of efforts aimed
at improving QKD, including reducing detector deadtime.5 Moreover, with the exponential growth in multimode
parametric downconversion (PDC) photon pair production rates6 now in the range of 2x106 s−1 and the more
recent development of χ(3) single-mode fiber-based sources with pair rates7, 8 up to 107 s−1, the need is clear
for faster photon-counting detection. In typical single photon detectors presently available, either commercial or
prototype, the deadtimes range from ≈50 ns for actively quenched avalanche photodiodes (APDs), to ≈10 µs
for passively quenched APDs, although even actively quenched APDs sometimes employ µs deadtimes to avoid
excessive afterpulsing rates. In addition to the absolute limits imposed by these effects, in practice detectors are
often limited to small fractions of these rates ( ≈1 MHz) to avoid undesirable systematic effects associated with
high deadtime fractions. Additional motivation for this proposal, is the improvement of traditional low light
detection applications such as medical diagnosis, bioluminescence, and chemical and material analyses, where
high speed and time resolution are also required.9–12

We present a scheme to improve detection rates by taking a pool of photon-counting detectors and operating
them as a unit. The scheme consists of a 1-by-N optical switch that takes a single input stream of photons and
distributes them to members of an array of N detectors. A switch controller monitors which detectors have fired
recently and are thus dead, and then routes subsequent incoming pulses to a detector that is ready. We analyze
and model and show that this system allows a system of N detectors to be operated at a significantly higher
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Figure 1. A pool of detectors and a fast switch are used to register a high rate of incoming photons. Incoming photons
are switched to a ready detector. If it fires, the detector is switched out of the ready pool until recovery. If it does not
fire, that detector remains ready.

detection rate than N times the detection rate of an individual detector, while maintaining the same Dead Time
Fraction (DTF).

The system’s switching operation could be sequential with each detector firing in order, or it could be set
up to direct the input to any live detector. The later implementation may allow for optimum use of an array
of detectors where each detector may have a different deadtime or when the switching time of the system is not
negligible. In our model here we assume the detectors all have the same deadtime and switch transition time.
(The switch transition time is meant to include any latency times, along with the actual optical transition times.)
While we include switch latency time as part of the switch transition time rather than as a separate parameter,
we point out that latency may affect the choice of what firing order minimizes transition times. For example,
a system using a switch with a significant latency time (perhaps due to long processing times to determine if a
detector has fired) might benefit from operation in a mode where, for a pulsed source, the input is switched to
another live detector regardless of whether the previous detector fired. This would reduce the effect of the long
latency as long as there is a high likelihood of there being at least one available live detector.

Compared to our previous analysis,13 the main addition of our current effort is the inclusion of the effect
of finite switching time. As before, we model the scheme where after a detector fires, the photons are sent by
the optical switch to the next detector in the sequence of N -detectors. This is the simplest implementation and
is all that is required when the optical switching time is not a large part of the overall system deadtime. For
simplicity we retain this scheme here even as we allow the switching time to approach a significant fraction of
the detector deadtime. In this new regime of non-negligible switch time, we assess the advantage of using this
scheme versus passive schemes using passive beamsplitter trees with detector arrays,14–16 as well as versus the
performance of a single detector with much reduced deadtime. We show the superiority of the scheme over a
hypothetical single detector with much improved deadtime, even when switching time is relevant. As previously,
we define the DTF as the ratio of missed- to incident-events, and RDTF=10% as the rate of incoming photons
giving a DTF=10%. This is often a reasonable limit for detector operation, so we use it as a benchmark to
estimate of the performance of our scheme.

The theoretical model is done for an arbitrary number of detectors for a cw input source and a finite switching
time of the control circuit. The goal here is to refine the theoretical model to include switch parameters that



could reasonably be expected for available devices. To achieve an analytical result we include the switching time
as part of the overall system deadtime.

We tested the analytical modeling by comparison to Monte Carlo modeling designed to simulate an input
stream of a large number of photons and numerically determine the DTF. Section 2 describes the theory for
evaluating the DTF for cw poissonian distributed photons source for a system of N-detectors with a given
switching time. The multiplexed detector system is considered as a single unit with an “effective” deadtime
given by a statistically weighted contribution of the switching time plus the delay given by the single detector
deadtime, when it is switched during its deadtime. The operation proceeds by switching the light input to the
next detector after the previous detector registers a count. Section 3 describes the Monte Carlo simulation of
the theory of section 2. Finally in section 4 we discuss the results and conclusions.

2. ANALYTICAL MODELING

Our analytical calculation estimates the DTF from the mean total count rate of the overall detector pool and
effective deadtimes for each detector (which depend on their position in the switching system). We consider a
Poissonian source and a pool of detectors with the identical detection efficiencies η and identical non-extending
deadtimes Td.

17 (We refer to a Poissonian source as cw because, while the photons arrive at discrete times, they
have equal probability to arrive at any time.)

The probability that n photons from a Poissonian source with mean photon rate λ are registered by a single
live detector with efficiency η in a time interval T is P (n) = (ηλT )ne−ηλT /n!. Thus the mean number of counts
registered is ηλT . From here on for simplicity we assume η = 1. (We can do this without loss of generality, as
η and λ always appear together and can thus be traded off against each other without affecting the ultimate
results.) In the presence of deadtime Td and for measurement time T � Td, the mean number of counts registered
reduces to

M = λT − MλTd. (1)

Rearranging, we have

M =
λT

1 + λTd
. (2)

The DTF, defined as the ratio of the lost counts over the total counts in the absence of dead time, for this
simple case is

DTF =
λT − M

λT
= 1 −

1

1 + λTd
. (3)

Here we consider the array of N detectors as a unified detection resource, having an overall or “effective”
deadtime Td(N). Therefore the DTF is

DTF = 1 −
1

1 + λTd(N)
. (4)

To highlight its advantage we will compare this N -detector system DTF to that which could be achieved
by of a single detector with a deadtime reduced by a factor of 1/N . For such an improved single detector,
DTF=1 − 1

1+λTd/N . This is also the same result that would be obtained by an array of N detectors with

deadtime Td and passive switching such as may be implemented with a tree arrangement of beam splitters.

We now calculate the effective deadtime of the system. Because the optical switch only switches photons to
a new detector after a registered count, the effective deadtime can be given by the statistical contribution of the
switching time, Ts and the single detector dead time, Td, governed by two cases- either a) N events are counted
in a time interval bigger than Td − Ts, or b) they occur in a time interval less than Td − Ts. In the second case,
the photon is switched to a dead detector adding an additional delay to the optical switching time. We write
the effective deadtime for N detectors as

Td(N) = pa,N(Td(N))Ts + pb,N(Td(N))(Td − Eb,N (Td(N))), (5)



where

pa,N(Td(N)) =

∫ +∞

Td−Ts

fN(∆t, Td(N))d∆t, (6)

and

pb,N(Td(N)) =

∫ Td−Ts

0

fN(∆t, Td(N))d∆t, (7)

are the probabilities that case (a) or (b) occurs for fN(∆t, Td(N)), the probability density distribution of the

time interval ∆t, between a count and the N − 1th preceding one. We indicate the dependence of the above
probabilities on Td(N).

Eb,N (Td(N)) =

∫ Td−Ts

0
∆tfN(∆t, Td(N))d∆t∫ Td−Ts

0
fN (∆t, Td(N))d∆t

(8)

is the mean time interval between a count and the N − 1th preceding one when case (b) occurs. For a poissonian
process where events are counted with an overall deadtime of fixed length Td(N), fN (∆t, Td(N)) is given by17

fN (∆t, Td(N)) =
λN−1[∆t − (N − 1)Td(N)]

N−2

(N − 2)!
exp(−λ[∆t − (N − 1)Td(N)])θ[∆t − (N − 1)Td(N)], (9)

which is a modified Gamma function, and θ is the Heaviside step function with θ(x) = 1 for x > 0 and 0
otherwise. Only in the case of N = 2 is the effective deadtime explicitly calculable. For more detectors we use
numerical methods.

In our previous work13 where the switching time was neglected, an explicit formula was possible. As it should,
the current model coincides with our previous calculation in the limit of switching time short compared to the
single detector deadtime. This theoretical approach is also in agreement, as we will show, with Monte-Carlo
simulation results.

2.1. Monte Carlo Modeling

The Monte Carlo modeling of our detection scheme for a cw source uses Poisson distributed incident photons at a
range of rates meant to describe the use of the system in conjunction with a laser source. As mentioned before, we
can assume 100 % efficient collection and detection without loss of generality. The individual detector deadtimes
were set to 1 µs. The modeling procedure consisted of first using a random number generator to simulate an
input stream of a large number of photons with exponentially distributed arrival times, which corresponds to a
poissonian photon number distribution with a given mean photon number. The resulting photon arrival list was
then apportioned to the detectors according to our switching plan. (We note that because of the inclusion of
finite switching times, we cannot use the same iterative Monte Carlo procedure that was employed in our previous
paper13 for the zero switching time situation.) In the case here with finite switching time, we go through the
time-sorted list of photon arrival times sending the first photon to the first detector, we skip any photons within
one switching time after that count, then proceed to the next incoming count which is recorded by the next
detector, and repeat these steps while also keeping track of if the next detector has recovered from its most
recent firing. On completing this process for the entire photon arrival list we have sorted the photons into those
detected and those missed to get an overall DTF.

3. RESULTS

Figure 2 (a) shows the dead time fraction for N = 1 to 5 detectors with switching times of 1% and 10% of
the single detector deadtime, versus the incoming photon rate, for a single detector deadtime of 1 µs. For
Ts = 0.1Td, the multiplexed scheme shows much less increase of the RDTF=10% points with increasing detector
number. For Ts = 0.01Td the effect of switching time on the system is negligible. Fig. 2 (b) compares the
analytic theory with the Monte Carlo results for one case of fig. 2 (a). The theory and simulation agree well for
all switching times considered. Fig. 2 (c) compares the active multiplexed scheme of this paper with a passive
scheme (detector/beamsplitter tree configuration) for Ts = 0.1Td. As judged by the RDTF=10% points, the active
multiplexed scheme surpasses the passive arrangement for N = 4, 5.
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Figure 2. DTF versus the incoming photon rate for N=1 to 5 detectors with Td=1 µs (a) for Ts = 0.01 Td (dotted lines)
and Ts = 0.1 Td (solid lines). (b) for theoretical (solid lines) and Monte Carlo (points) results for Ts = 0.01 Td. (c) for
Ts = 0.1 Td for a passive scheme (dotted lines) and active switched scheme (solid lines).
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Figure 3. For systems of 2 to 5 detectors all with Td = 1 µs (a) Plots of Td(N) with Ts = 0.1 Td (dotted lines) and
Ts = 0.01 Td (solid lines). The limit for Td(N) for high incoming photon rate is Td/N , while for low photon rate it is Ts.
(b) Ratio of the number of photons counted by multiplexed systems to those counted by a single detector, all for Td= 1
µs, and Ts = 0.1 Td (dotted lines), Ts = 0.01 Td (solid lines). The ratio limit for high incoming photon rate is N .

Figure 3 (a) shows the mean effective deadtime Td(N) for N up to 5, versus the mean incident photon rate
(λ), for Ts = 0.1 Td and 0.01 Td. The effective deadtime clearly satisfies the condition Ts ≤ Td(N) ≤ Td/N . We
see that the maximum effective deadtime of the multiplexed scheme coincides with the detector tree deadtime.
This means that for an optical switch with Ts < Td/N , our scheme surpasses what is possible with a passive
scheme.

Figure 3 (b) shows the ratio of the mean count rate for our multiplexed scheme to the count rate of a single
detector, versus the mean incoming photon rate. We see that as expected for high count rate the maximum gain
is N -times the rate that would be obtained by a single detector.

Figure 4 shows RDTF=10% versus the number of detectors for the active switching system for several switching
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times. The Ts = 0.001 Td result differs little from the theory that neglected the switching time.13 Up to
Ts = 0.02 Td the results show significant advantage of the active switch scheme for all numbers of detectors
shown. Above Ts = 0.2 Td the advantage is reduced until ultimately the active system falls below the passive
scheme for just a few detectors.

4. CONCLUSION

We have shown that a pool of N detectors with a controlled switch system can in principle be operated at
much higher incident photon rates than is otherwise possible either with a single detector with much reduced
deadtime, or an array of detectors with a passive switch system such as might be implemented with by a
tree of beamsplitters. Our modeling included realistic optical switch transition times and showed that switch
transitions times are negligible when they are less than 2% of the individual detector deadtimes which means that
the scheme should be practical for the case of detectors like InGaAs APDs which often operate with microsecond
deadtimes. However for the switching times of 20% or more of the single photon detector deadtime, a detector
tree configuration would be more convenient and advantageous.
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