A Study of tungsten spectra using Large Helical Device and Compact Electron Beam Ion Trap in NIFS

S.Morita^{a,b}, C.F.Dong^a, M.Goto^{a,b}, D.Kato^a, I.Murakami^{a,b}, H.A.Sakaue^a, M.Hasuo^c, F.Koike^d, N.Nakamura^e, T.Oishi^a, A.Sasaki^f and E.H.Wang^b

^a National Institute for Fusion Science, Toki 509-5292, Gifu, Japan^a
Popartment of Eusion Science, Graduate University for Advanced Studies, Toki 500 **Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu, Japan c Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan d Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374, Japan** ^eInstitute of Laser Science, University of Electro-Communications, Tokyo 182-8585, Japan⁶
Cuantum Boam Science Directorate, Japan Atomic Energy Besearch Agency Kyoto 619-0215 **Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kyoto 619-0215, Japan**

E-mail address: morita@nifs.ac.jp

ICAMDATA-8

8th International Conference on Atomic and Molecular Data and Their Applications National Institute of Standards and Technology, Gaithersburg, Maryland, USA 30 September - 4 October 2012

Contents

- **1. Introduction**
- **2. EUV spectroscopy (10-600**Å**)**
	- **2.1 EUV spectra from tungsten in LHD**
	- **2.2 Analysis of LHD spectra based on CoBIT spectra**
	- **2.3 Preliminary result on quantitative analysis of Zn-like W44+**
- **3. Modeling of W spectra**
- **4. Visible spectroscopy (3000-7000**Å**)**
	- **4.1 Observation of W26+ M1 transition**

4.2 Observation of W pellet ablation cloud 5. Summary

Introduction (I): W in fusion devices

• ITER decided to use W for divertor region instead of carbon.

Physical sputtering yield: C Physical sputtering yield: W J.B.Roberto, ORNL/TM-8593 (1983). 10^{-1} 10 **atoms/ion** 10^{-7} 10^{-2} **BORDERS** ,
⊙H.⊿ D.□ He ROTH $10⁻$ $10[°]$ ROSENBERG $---(D, ^{4}He, \bar{W})DSPUT$ $-(H,D,T, {}^4He, Xe)IPF$ $10⁻$ 10^{10} **10**¹ **10**² **10**³ **10**⁴ **10**¹ **10**² **10**³ **10**⁴ **Ion energy (eV) Ion energy (eV)** Tritium retention (tritium/atom) [ritum concentration (T/X) J.Roth et al., PPCF 50(2008)103001. Be 10^{2} \Box \Box $10³$ \Box W **BeC** \Box BeO+C \circ **WC** \Box $10⁴$

500

400

100

200

300

Temperature (°C)

600

• Erosion of W

- 1000 times smaller at 100eV
- Chemical sputtering of C is bigger than physical sputtering at 800°C.
- Large erosion increases DUST.

• Tritium retention of W

- 1000 times smaller at 300°C.
- Tritium is absorbed by DUST and cooling water.

• Demerits

- Changed into highly radioactive material.
- Breakable at high temperature.
- Large radiation loss.

Introduction (II): W diagnostics

- Spectroscopy is only a tool for the study of W transport in fusion plasmas.
- At present the spectral line useful for W diagnostics is only one;

WI (W^{0+}) : 4009Å in visible range

- It is quite important to study the W line in fusion research;
	- What kinds of W lines exist in plasmas? (identification of W lines)
	- Which line is useful for the diagnostics of fusion plasma?
- What is the reliability of existing wavelengths and rate coefficients? (Study on atomic structure of high-Z elements in relativistic system is of course important)
- W study in fusion research is really necessary for a great help of atomic physicists.
- Zn-like WXLV (W⁴⁴⁺: 4s²), which has a similar configuration of He-like ion, is one of candidates applicable to the fusion plasma diagnostics.
- Preliminary result on W^{44+} is presented with possible quantitative analysis.

Introduction (III): Max. charge state of W

• LHD

- NBI (neutral beam injection): T_{e} <4keV (max. q: W^{46+})
- ECH (electron cyclotron heating) T_{e} < 20keV
- ITER (max. q: W^{64+} W^{72+}) - T $\rm _e$ ∼T $\rm _i$ ∼10-20keV at n $\rm _e$ ∼10 $\rm ^{14}$ cm $\rm ^{-3}$

W EUV spectra from LHD in 40-140Å

• W spectra observed with 1200g/mm EUV spectrometer (50-500Å).

W EUV spectra from LHD in 10-70Å

• W spectra observed with 2400g/mm EUV spectrometer (10-100Å).

- W¹²⁺ (E_i=0.258keV) 4s²4p⁶4d¹⁰4f¹⁴5s² \rightarrow Not simple configuration
- \bullet W¹⁵⁺ (E_i=0.362keV) 4s²4p⁶4d¹⁰4f¹¹5s²
- \bullet W¹⁷⁺ (E_i=0.421keV) 4s²4p⁶4d¹⁰4f¹¹
- \bullet W $^{19+}$ (E_i=0.503keV) 4s 2 4p 6 4d 10 4f 9 \rightarrow 6g-4f (20-40Å), 5g-4f (20-45Å)
- \bullet W $^{28+}$ (E_i=1.132keV) 4s 2 4p 6 4d 10 \rightarrow 5f-4d (18-30Å), 5g-4f (20-45Å), 4f-4d (45-65Å)
- \bullet W $^{38+}$ (E_i=1.830keV) 4s²4p⁶ \rightarrow 4d-4p (60-70Å)
- \bullet W $^{44+}$ (E_i=2.354keV) 4s 2 \rightarrow 4p-4s (60.93, 132.9Å) $\qquad \rightarrow$ \bullet W $^{45+}$ (E_i=2.414keV) 4s $\;\rightarrow$ 4p-4s (62.336, 126.998Å) \rightarrow

Simple configuration

W19+ -W34+ in 15-45Å

- Electron temperature (T_e) dependence of EUV spectra from LHD.
- Spectral shape changes largely.
- Spectra are composed of W^{19+} to W^{34+} ions ?
- Typical spectrum in 15-35Å is analyzed based on EUV spectra from CoBIT.

CoBIT: Compact EBIT

W27+-W43+ in 45-70Å

- 4f-4d transition array: W^{19+} - W^{27+} Ei =0.503-0.881keV Lower T_e range
- 4d-4p transition array: W^{27+} -W⁴³⁺ Ei =0.881-2.210keV Higher T_e range
- Spectral lines are visible when 4d electrons are partially ionized. $(E_i=1.132 \text{keV}$ for W^{28+} 4s²4p⁶4d¹⁰)
- Pseudo-continuum in low T_e discharges will come from 4f-4d transition.
- Application to plasma diagnostics is entirely difficult in these transitions.

CoBIT (compact EBIT) in NIFS

CoBIT is very compact and easier operatable ion source.

- Electron energy: 0.1-3keV
- Electron current: 10-20mA
- Max. magnetic field: $0.2T$ operated with Lq. N₂

 $W(CO)_{6}$

W EUV spectra from CoBIT

• W spectra are observed with line peak shift for W^{19+} to W^{34+} ions when E_e is changed.

Line peak shift for each transition

- Peak shift is well explained by C-R model developed with HULLAC code in configuration mode
- Configuration mode: configuration average energy and total angular momentum *J*

LHD spectrum analysis from CoBIT (I)

- Two CoBIT spectra with different energies of E=950 and 1370eV are considered.
- Analyzed spectral lines are superposed to simulate LHD spectrum.

13/27

LHD spectrum analysis from CoBIT (II)

• Superposed CoBIT spectrum is compared with LHD spectrum.

14/27

• Basic structure of LHD spectrum can be well explained by CoBIT spectrum.

LHD spectrum analysis from CoBIT (III)

• LHD spectrum in 15-35Å range composes of

5f-4d of W^{28+} - W^{32+} ions 6g-4f of $\mathsf{W}^{24+}\mathsf{\textup{-}}\mathsf{W}^{28+}$ ions 5p-4d of W^{28+} - W^{33+} ions 5g-4f of $\mathsf{W}^{24+}\mathsf{\textup{-}}\mathsf{W}^{28+}$ ions

- 4 s

- W^{44+} is visible when T $_e \ge 2.35$ keV.
- \bullet W⁴⁶⁺ is the highest ionization stage in NBI discharges of LHD.
- W spectrum from W^{44+} and W^{45+} at plasma core is simple.

HULLAC code calculation of W44+ spectra

- W^{44+} spectra near 60Å are calculated by HULLAC code.
- Configuration interaction between $4s^2$ ¹S₀ and $4p^2$ ¹S₀ enhances intensity of

 W^{44+} line 4p 2 $^{1}\mathsf{S}_{0}$ and 4s4p $^{1}\mathsf{P}_{1}$ at 62.0Å.

- W^{44+} is not observed at 62.0Å in T_e=2.35keV whereas W^{44+} appears at 60.6Å.
- W^{45+} at 62.1Å is visible when T_e is higher $(=2.7keV).$
- Effect of configuration interaction is not so large for W^{44+} 4p² - 4s4p line at 62.0Å.

20 40 60

 $T_e = 2.35 \text{keV}$

 $T_e = 2.7$ keV

kcounts/ch

kcounts/ch

counts/ch

Impurity transport code calculation

• Local impurity density, n_q , is determined by continuity equation in cylindrical geometry.

$$
\frac{\partial n_q}{\partial t} = -\frac{1}{r} \frac{\partial}{\partial r} \left(r \Gamma_q \right) - \left(\alpha_q + \beta_q \right) n_e n_q + \beta_{q+1} n_e n_{q+1} + \alpha_{q-1} n_e n_{q-1}
$$

(α, β : ionization and recombination rate coefficients used ADPAK code)

• Radial impurity flux, Γ_{q} , is expressed by diffusive/convective model;

$$
\Gamma_q = -D \frac{\partial n_q}{\partial r} + n_q V
$$

(D, V : diffusion coefficient and convective velocity)

- \bullet W^{q+} distribution at plasma core is not sensitive to reasonable D and V ranges.
- It is much affected by the reliability of ionization and recombination rates.

Temperature dependence of W44+ line

• T_e dependence of W^{44+} line intensity is analyzed using T_e recovery phase after W pellet injection (4.4≤t≤4.8s).

• Peak intensity of W^{44+} is observed at T_e=2.8keV, whereas the peak abundance of W^{44+} is predicted at $T_e=4.5$ keV by the impurity transport code calculation.

Radial profile of W44+ emission

• Vertical profile of W is measured with a space-resolved EUV spectrometer.

• Vertical profile is reconstructed into local emissivity as a function of ρ . Normalized radius: $p=r/ca$, plasma volume: $V_p=2πR×π < a>^2$ <a>, R, r: minor radius, major radius and radial position of cylindrical torus

Effect of CI on W44+ emission coefficient

- Configuration interaction (CI) of W^{44+} line gives a clear difference in the emission coefficient.
- Emission coefficient with CI is about 70% larger than that without CI.
- But radial emissions of W^{44+} give a very similar profile between the two cases.
- Wavelength of W^{44+} clearly changes between the two cases.

HULLAC with CI: 60.6Å HULLAC w/o CI: 61.2Å EBIT, tokamak: 60.87, 60.93Å LHD: (60.81Å) **4s²**

Quantitative analysis of W44+

- Uncertainty of recombination rate coefficient is ignored in the analysis.
- W^{44+} profile calculated from impurity transport code agreed with experimental profile only in the plasma core.
- It suggests W^{44+} line is blended with W line from lower ionization stage.
- Analysis indicates the density of W^{44+} ion, n(W^{44+}): $n(W^{44+})/n_e=1.4x10^{-4}$ with CI, $n(W^{44+})/n_e=2.4x10^{-4}$ w/o CI.
- Total W density: $n_w/n_e = 8.8 \times 10^{-4}$ with CI, $n_w/n_e = 1.5 \times 10^{-3}$ w/o CI
- Total radiation from W is estimated to be roughly 5MW from average ion model.

Spectral modeling for W ions

- Modeling of W ions is attempted for EUV spectra at 40-70Å.
- Collisional-radiative model has been constructed for W^{$^{q+}$} ions with *q*=20 - 45.
- Maxwellian electron velocity distribution is assumed.
- Atomic data are calculated by HULLAC code.
- Excited fine structure levels with *n* up to 6 (*l*<5) are considered;

2,000 - 26,000 levels examined for one ion.

- Recombination processes are not included.
- UTA at 45-55Å: 4d-4p and 4f-4d transitions UTA at 55-65Å: 4d-4p, 4f-4d, and 5d-4f transitions of W*^q*⁺ with *q*<38.
- Modeling of W including recombination has been also developed to calculate ionization balance, while spectral modeling is difficult.

23/27

Observation of M1 transition from W26+

• M1 transition is identified as 4s²4p⁶4d¹⁰4f^{2 3}H₅-³H₄ at ground state of W²⁶⁺ ion.

^aCoBIT, A.Komatsu et al. Phys.Scr. T144 (2011) 014012, ^bTokyo-EBIT, H. Watanabe et al. Can.J.Phys. 90 (2012) 497, ^cgrasp2K, X.-B.Ding et al. J.Phys.B 44 (2011) 145004.

- Wavelength is determined by Gaussian fitting.
- Central emission at 3894Å indicates a visible line from highly charged ion.
- M1 is useful for diagnostics and atomic structure modeling.

 0.5

 0.0

 -0.5

 0.5

 -0.5

 $Z(m)$ 0.0

After W pellet

 $f14(3.55 - 3.69s)$

 $f15(3.8-3.94s)$

Wavelength (Å)

Importance of M1 transition

Atomic physics

- Strong relativistic effect in high-Z elements
- Transition from L-S coupling to J-J coupling
- Reconstruction of atomic structure of high-Z ions is possible based on M1 transition observation.

Diagnostics of alpha particle for ITER burning plasmas

- M1 intensity is sensitive to high-energy ions.
- Ratio of E1 to M1 for F-like ions is calculated for a-particle diagnostics of ITER.
- \bullet Enhancement of M1 intensity by proton collision is very large due to high T_i.
- Small effect of proton impact and large effect of α -particle impact are necessary for M1.

Visible spectroscopy of W

W visible line from LHD

• W plate inserted into plasma edge boundary

Red: Direct observation of W plate at 4.5-U port Gray: BKGD emission from divertor region at 10-O port

W visible lines from ablation cloud of impurity pellet

- Ablation cloud of cylindrical carbon pellet with W (1.2mm^Lx1.2mm⁺, 100≤V_p≤300m/s) Parameters: T_e =2.5eV, n_e =5x10¹⁶cm⁻³ for CII, T_e =3.0eV, n_e =5x10¹⁴cm⁻³ for CIII
- Several lines denoted with arrows are identified by NIST data table.
- WI line at 4009Å is not strong.

Summary

- W spectroscopy in LHD has started from FY 2011.
- W spectra from LHD have been observed in visible, VUV and EUV ranges.
- UTA spectrum in 15-35Å is well analyzed based on CoBIT spectra.
- Radial profile of Zn-like W^{44+} is quantitatively analyzed with HULLAC code.
- W density to electron density of 8.8×10^{-4} is reasonably obtained as initial trial.
- The present result indicates that W^{44+} and W^{45+} can be used for plasma diagnostics.
- Modeling of W spectra has been also started by considering 20,000 sublevels.
- Modeling including recombination effect also begins to study.
- M1 transition is observed from W^{26+} ion.
- A large number of visible W lines are observed from pellet ablation cloud.

For more reliable analysis of W;

- Improvement of ionization and recombination rates
- Modeling of W spectra to explain the experiment
- More accurate wavelength calculation
- Further line identification in the whole wavelength range of 10-7000Å

Impurity pellet injection

• Various cylindrical impurity pellets have been injected to LHD for confinement improvement and diagnostic use. 6≤Z≤74

