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Introduction (I): W in fusion devices 

 

• ITER decided to use W for divertor region instead of carbon. 
 
• Erosion of W 
 - 1000 times smaller at 100eV 
 - Chemical sputtering of C is 
   bigger than physical sputtering 
   at 800°C.  
 - Large erosion increases DUST. 
 
 

• Tritium retention of W 
 - 1000 times smaller at 300°C. 
 - Tritium is absorbed by DUST 
   and cooling water. 
 
• Demerits 
 - Changed into highly radioactive material. 
 - Breakable at high temperature. 
 - Large radiation loss.

Physical sputtering yield: W 
J.B.Roberto, ORNL/TM-8593 (1983). 

Physical sputtering yield: C 

Ion energy (eV) Ion energy (eV) 

atoms/ion 

Tritium retention 
(tritium/atom) 
J.Roth et al., PPCF 
50(2008)103001. 

102 103 104 101 102 103 104 101 
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Introduction (II): W diagnostics 

 

• Spectroscopy is only a tool for the study of W transport in fusion plasmas. 
• At present the spectral line useful for W diagnostics is only one; 
 
 
  WI (W0+): 4009Å in visible range 
 
 
• It is quite important to study the W line in fusion research; 
 
 - What kinds of W lines exist in plasmas? (identification of W lines) 
 - Which line is useful for the diagnostics of fusion plasma? 
 - What is the reliability of existing wavelengths and rate coefficients? 
(Study on atomic structure of high-Z elements in relativistic system is of course important) 
 
• W study in fusion research is really necessary for a great help of atomic physicists. 
• Zn-like WXLV (W44+: 4s2), which has a similar configuration of He-like ion, is one of 
candidates applicable to the fusion plasma diagnostics. 
 
• Preliminary result on W44+ is presented with possible quantitative analysis. 

WI 
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Introduction (III): Max. charge state of W 

 

• LHD 
    - NBI (neutral beam injection): Te<4keV (max. q: W46+) 
    - ECH (electron cyclotron heating) Te<20keV 
 
• ITER (max. q: W64+ - W72+)  
    - Te∼Ti∼10-20keV at ne∼1014cm-3 
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W EUV spectra from LHD in 40-140Å 

 

• W spectra observed with 1200g/mm EUV spectrometer (50-500Å). 
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W EUV spectra from LHD in 10-70Å 
 

• W spectra observed with 2400g/mm EUV spectrometer (10-100Å). 
 
 
 
 
 
 
 
 
• W12+ (Ei=0.258keV) 4s24p64d104f145s2 → Not simple configuration 
• W15+ (Ei=0.362keV) 4s24p64d104f115s2 
• W17+ (Ei=0.421keV) 4s24p64d104f11 
• W19+ (Ei=0.503keV) 4s24p64d104f9 → 6g-4f (20-40Å), 5g-4f (20-45Å) 
• W28+ (Ei=1.132keV) 4s24p64d10 → 5f-4d (18-30Å), 5g-4f (20-45Å), 4f-4d (45-65Å) 
• W38+ (Ei=1.830keV) 4s24p6 → 4d-4p (60-70Å) 
 
• W44+ (Ei=2.354keV) 4s2 → 4p-4s (60.93, 132.9Å)     → 
• W45+ (Ei=2.414keV) 4s  → 4p-4s (62.336, 126.998Å) → 

0

2

4

6

10 20 30 40 50 60 70

10
4 c

ou
nt

s/
ch

 

λ (Å)

CVI (33.73)OVIII:18.967Å W27+-W43+

W19+-W34+

Simple configuration 



 

8/27 

W19+-W34+ in 15-45Å 
 

• Electron temperature (Te) dependence 
of EUV spectra from LHD. 
 

• Spectral shape changes largely. 
 
• Spectra are composed of W19+ to W34+ 
ions ? 

 
• Typical spectrum in 15-35Å is analyzed  
based on EUV spectra from CoBIT. 
 
CoBIT: Compact EBIT 
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W27+-W43+ in 45-70Å 
 

• 4f-4d transition array: W19+-W27+ 

    Ei=0.503-0.881keV 
    Lower Te range 
 
• 4d-4p transition array:  W27+-W43+ 
    Ei=0.881-2.210keV 
    Higher Te range 
 
• Spectral lines are visible when 4d electrons 
  are partially ionized. 
   (Ei=1.132keV for W28+ 4s24p64d10) 
 
• Pseudo-continuum in low Te discharges 
  will come from 4f-4d transition. 
 
• Application to plasma diagnostics is 
  entirely difficult in these transitions.
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CoBIT (compact EBIT) in NIFS 

 

CoBIT is very compact and easier operatable ion source. 
 
• Electron energy: 0.1-3keV 
• Electron current: 10-20mA 
• Max. magnetic field: 0.2T operated with Lq. N2 
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W EUV spectra from CoBIT 

 

• W spectra are observed with line peak shift for W19+ to W34+ ions when Ee is changed. 
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Line peak shift for each transition 

 

• Peak shift is well explained by C-R model developed with HULLAC code in 
configuration mode 
• Configuration mode: configuration average energy and total angular momentum J 
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LHD spectrum analysis from CoBIT (I) 

 

• Two CoBIT spectra with different energies of E=950 and 1370eV are considered. 
• Analyzed spectral lines are superposed to simulate LHD spectrum. 
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LHD spectrum analysis from CoBIT (II) 

 

• Superposed CoBIT spectrum is compared with LHD spectrum. 
• Basic structure of LHD spectrum can be well explained by CoBIT spectrum. 
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LHD spectrum analysis from CoBIT (III) 

 

• LHD spectrum in 15-35Å range composes of 
  5f-4d of W28+-W32+ ions 
  6g-4f of W24+-W28+ ions 
  5p-4d of W28+-W33+ ions 
  5g-4f of W24+-W28+ ions 



 

16/27 

W44+ 4p-4s 

 

• W44+ is visible when Te≥2.35keV. 
 
• W46+ is the highest ionization stage 
in NBI discharges of LHD. 

 
• W spectrum from W44+ and W45+ at  
plasma core is simple. 
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HULLAC code calculation of W44+ spectra 

 

• W44+ spectra near 60Å are calculated by HULLAC code. 
• Configuration interaction between 4s2 1S0 and 4p2 1S0 enhances intensity of  
 W44+ line 4p2 1S0 and 4s4p 1P1 at 62.0Å. 
• W44+ is not observed at 62.0Å in Te=2.35keV  
whereas W44+ appears at 60.6Å. 

• W45+ at 62.1Å is visible when Te is higher  
(=2.7keV). 

• Effect of configuration interaction is not so 
 large for W44+ 4p2 - 4s4p line at 62.0Å. 
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Impurity transport code calculation 

 

• Local impurity density, nq, is determined by continuity equation in cylindrical geometry. 
 
 
   
 (α, β : ionization and recombination rate coefficients used ADPAK code) 
• Radial impurity flux, Γq, is expressed by diffusive/convective model; 
 
 
   (D, V : diffusion coefficient and convective velocity) 
• Wq+ distribution at plasma core is not sensitive to reasonable D and V ranges. 
• It is much affected by the reliability of ionization and recombination rates. 

( ) ( ) 1111
1

−−++ +++−Γ
∂
∂

−=
∂

∂
qeqqeqqeqqq

q nnnnnnr
rrt

n
αββα

Vn
r

n
D q

q
q +

∂

∂
−=Γ

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1.0
ρ (=r/a)

n W
44

+  
(1

08
cm

-3
)

4.6keV

4.0keV

3.0keV

5.2keV

6.2keV

nW/ne=10-4

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1.0
ρ (=r/a)

Te(0)=4.6keV

0.2

D=0.05m2/s

nW/ne=10-4

ne(0)=4x1013cm-3

0.1

0.4

0.8

n W
44

+  
(1

08
cm

-3
)

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0
ρ (=r/a)

1.0

0.250.5

2.0

V=4.0m/s

n W
44

+  
(1

08
cm

-3
) Te(0)=4.6keV

nW/ne=10-4

ne(0)=4x1013cm-3



 

19/27 

Temperature dependence of W44+ line 

 

• Te dependence of W44+ line intensity is analyzed using Te recovery phase after W pellet 

injection (4.4≤t≤4.8s). 

• Peak intensity of W44+ is observed at Te=2.8keV, whereas the peak abundance of W44+ 

is predicted at Te=4.5keV by the impurity transport code calculation. 
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Radial profile of W44+ emission 

 

• Vertical profile of W is measured with a space-resolved EUV spectrometer. 
 
 
 
 
 
 
 
• Vertical profile is reconstructed into local emissivity as a function of ρ. 
 Normalized radius: ρ=r/<a>, plasma volume: Vp=2πR×π<a>2 
 <a>, R, r: minor radius, major radius and radial position of cylindrical torus 
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Effect of CI on W44+ emission coefficient 

 

• Configuration interaction (CI) of W44+ line gives a clear difference in the emission 
  coefficient. 
• Emission coefficient with CI is about 70% larger than that without CI. 
• But radial emissions of W44+ give a very similar profile between the two cases. 
• Wavelength of W44+ clearly changes between the two cases. 
   HULLAC with CI: 60.6Å 
   HULLAC w/o CI: 61.2Å 
   EBIT, tokamak: 60.87, 60.93Å 
   LHD: (60.81Å)  
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Quantitative analysis of W44+
 

 

• Uncertainty of recombination rate coefficient is ignored in the analysis. 
• W44+ profile calculated from impurity transport code agreed with experimental profile 
only in the plasma core. 
• It suggests W44+ line is blended with W line from lower ionization stage. 
• Analysis indicates the density of W44+ ion, n(W44+):  
  n(W44+)/ne=1.4x10-4 with CI, n(W44+)/ne=2.4x10-4 w/o CI. 
• Total W density: nW/ne=8.8x10-4 with CI, nW/ne=1.5x10-3 w/o CI 
• Total radiation from W is estimated to be roughly 5MW   from average ion model. 
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Spectral modeling for W ions 

 

• Modeling of W ions is attempted for EUV  
spectra at 40-70Å. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Modeling of W including recombination has  
been also developed to calculate ionization 
balance, while spectral modeling is difficult. 

• Collisional-radiative model has been 
constructed for W

q+
 ions with q=20 - 45. 

• Maxwellian electron velocity distribution is 
assumed. 
• Atomic data are calculated by HULLAC 
code.  
• Excited fine structure levels with n up to 6 
(l<5) are considered; 
 2,000 - 26,000 levels examined for one ion.  
• Recombination processes are not included. 
•  UTA at 45-55Å: 4d-4p and 4f-4d transitions 
  UTA at 55-65Å: 4d-4p, 4f-4d, and 5d-4f 
  transitions of W

q+ with q<38. 

Modeling results 
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Observation of M1 transition from W26+
 

 

• M1 transition is identified as 4s24p64d104f2 3H5-
3H4 at ground state of W26+ ion. 

 

Present results Previous experiment (EBIT) Theory 
3893.7(4)Å 3894.1(6)Åa, 3893.5(3)Åb 3884.3Åc (MCDF) 
3899.1(4)Å Not available Not available 

aCoBIT, A.Komatsu et al. Phys.Scr. T144 (2011) 014012, bTokyo-EBIT, H. Watanabe et al. Can.J.Phys. 90 
(2012) 497,  cgrasp2K, X.-B.Ding et al. J.Phys.B 44 (2011) 145004. 

3890    3894    3898    3902 
Wavelength (Å) 

Before W pellet 

3890   3894   3898   3902 
Wavelength (Å) 

After W pellet 

• 1.3m Czerny-Turner  
 spectrometer; 
  1800 grooves/mm 
  ∆λ=0.45Å 
  40 optical fiber array 
• CCD exposure: 140ms 

• Wavelength is determined by Gaussian fitting. 
• Central emission at 3894Å indicates a visible 
line from highly charged ion. 
• M1 is useful for diagnostics and atomic structure 
modeling. 
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Importance of M1 transition 

 

Atomic physics 
• Strong relativistic effect in high-Z elements 
• Transition from L-S coupling to J-J coupling 
• Reconstruction of atomic structure of high-Z ions 
is possible based on M1 transition observation. 
 
Diagnostics of alpha particle for ITER burning plasmas 
• M1 intensity is sensitive to high-energy ions. 
• Ratio of E1 to M1 for F-like ions is calculated for a-particle diagnostics of ITER. 
• Enhancement of M1 intensity by proton collision is very large due to high Ti. 
• Small effect of proton impact and large effect of α-particle impact are necessary for M1. 
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Visible spectroscopy of W 

 

W visible line from LHD 
• W plate inserted into plasma edge boundary 
 
  Red: Direct observation of W plate  
  at 4.5-U port 
  Gray: BKGD emission from divertor region  
  at 10-O port 
 
W visible lines from ablation cloud of impurity pellet 
• Ablation cloud of cylindrical carbon pellet with W (1.2mmLx1.2mmφ, 100≤Vp≤300m/s) 
   Parameters: Te=2.5eV, ne=5x1016cm-3 for CII, Te=3.0eV, ne=5x1014cm-3 for CIII 
• Several lines denoted with arrows are identified by NIST data table. 
• WI line at 4009Å is not strong.
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Summary 

 

• W spectroscopy in LHD has started from FY 2011. 
• W spectra from LHD have been observed in visible, VUV and EUV ranges. 
 
• UTA spectrum in 15-35Å is well analyzed based on CoBIT spectra. 
• Radial profile of Zn-like W44+ is quantitatively analyzed with HULLAC code. 
• W density to electron density of 8.8x10-4 is reasonably obtained as initial trial.  
• The present result indicates that W44+ and W45+ can be used for plasma diagnostics. 
 
• Modeling of W spectra has been also started by considering 20,000 sublevels. 
• Modeling including recombination effect also begins to study. 
• M1 transition is observed from W26+ ion. 
• A large number of visible W lines are observed from pellet ablation cloud. 
 
For more reliable analysis of W; 
• Improvement of ionization and recombination rates 
• Modeling of W spectra to explain the experiment 
• More accurate wavelength calculation 
• Further line identification in the whole wavelength range of 10-7000Å 
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Impurity pellet 
injector 
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monitor system 
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spectrometer 

LHD 

Impurity pellet injection  

 

• Various cylindrical impurity pellets have been injected to LHD for confinement 
improvement and diagnostic use. 
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