A Study of tungsten spectra using Large Helical Device and Compact Electron Beam Ion Trap in NIFS

S.Morita^{a,b}, C.F.Dong^a, M.Goto^{a,b}, D.Kato^a, I.Murakami^{a,b}, H.A.Sakaue^a, M.Hasuo^c, F.Koike^d, N.Nakamura^e, T.Oishi^a, A.Sasaki^f and E.H.Wang^b

^aNational Institute for Fusion Science, Toki 509-5292, Gifu, Japan ^bDepartment of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu, Japan ^cDepartment of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan ^dPhysics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374, Japan ^eInstitute of Laser Science, University of Electro-Communications, Tokyo 182-8585, Japan ^fQuantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kyoto 619-0215, Japan

E-mail address: morita@nifs.ac.jp

ICAMDATA-8

8th International Conference on Atomic and Molecular Data and Their Applications National Institute of Standards and Technology, Gaithersburg, Maryland, USA 30 September - 4 October 2012

Contents

- 1. Introduction
- 2. EUV spectroscopy (10-600Å)
 - 2.1 EUV spectra from tungsten in LHD
 - 2.2 Analysis of LHD spectra based on CoBIT spectra
 - 2.3 Preliminary result on quantitative analysis of Zn-like W⁴⁴⁺
- 3. Modeling of W spectra
- 4. Visible spectroscopy (3000-7000Å)
 - 4.1 Observation of W²⁶⁺ M1 transition
- 4.2 Observation of W pellet ablation cloud 5. Summary

Introduction (I): W in fusion devices

10

10

10

10

• ITER decided to use W for divertor region instead of carbon.

Erosion of W

- 1000 times smaller at 100eV
- Chemical sputtering of C is bigger than physical sputtering at 800°C.
- Large erosion increases DUST.

Tritium retention of W

- 1000 times smaller at 300°C.
- Tritium is absorbed by DUST and cooling water.

Demerits

- Changed into highly radioactive material.
- Breakable at high temperature.
- Large radiation loss.

WC

100

500

400

Temperature (°C)

600

Introduction (II): W diagnostics

- Spectroscopy is only a tool for the study of W transport in fusion plasmas.
- At present the spectral line useful for W diagnostics is only one;

WI (W⁰⁺): 4009Å in visible range

- It is quite important to study the W line in fusion research;
- What kinds of W lines exist in plasmas? (identification of W lines)
- Which line is useful for the diagnostics of fusion plasma?
- What is the reliability of existing wavelengths and rate coefficients? (Study on atomic structure of high-Z elements in relativistic system is of course important)
- W study in fusion research is really necessary for a great help of atomic physicists.
- Zn-like WXLV (W⁴⁴⁺: 4s²), which has a similar configuration of He-like ion, is one of candidates applicable to the fusion plasma diagnostics.
- Preliminary result on W⁴⁴⁺ is presented with possible quantitative analysis.

Introduction (III): Max. charge state of W

• LHD

- NBI (neutral beam injection): T_e<4keV (max. q: W⁴⁶⁺)
- ECH (electron cyclotron heating) $T_e\!\!<\!\!20keV$
- ITER (max. q: W^{64+} W^{72+}) - $T_e \sim T_i \sim 10-20 \text{keV}$ at $n_e \sim 10^{14} \text{cm}^{-3}$

W EUV spectra from LHD in 40-140Å

• W spectra observed with 1200g/mm EUV spectrometer (50-500Å).

W EUV spectra from LHD in 10-70Å

• W spectra observed with 2400g/mm EUV spectrometer (10-100Å).

- W^{12+} (E_i=0.258keV) 4s²4p⁶4d¹⁰4f¹⁴5s² \rightarrow Not simple configuration
- W^{15+} (E_i=0.362keV) 4s²4p⁶4d¹⁰4f¹¹5s²
- W^{17+} (E_i=0.421keV) 4s²4p⁶4d¹⁰4f¹¹
- W^{19+} (E_i=0.503keV) 4s²4p⁶4d¹⁰4f⁹ \rightarrow 6g-4f (20-40Å), 5g-4f (20-45Å)
- W^{28+} (E_i=1.132keV) 4s²4p⁶4d¹⁰ \rightarrow 5f-4d (18-30Å), 5g-4f (20-45Å), 4f-4d (45-65Å)
- W^{38+} (E_i=1.830keV) $4s^24p^6 \rightarrow 4d-4p$ (60-70Å)
- W^{44+} (E_i=2.354keV) $4s^2 \rightarrow 4p-4s$ (60.93, 132.9Å) \rightarrow • W^{45+} (E_i=2.414keV) $4s \rightarrow 4p-4s$ (62.336, 126.998Å) \rightarrow

Simple configuration

W¹⁹⁺-W³⁴⁺ in 15-45Å

- Electron temperature (T_e) dependence of EUV spectra from LHD.
- Spectral shape changes largely.
- Spectra are composed of W¹⁹⁺ to W³⁴⁺ ions ?
- Typical spectrum in 15-35Å is analyzed based on EUV spectra from CoBIT.

CoBIT: Compact EBIT

W²⁷⁺-W⁴³⁺ in 45-70Å

- \bullet 4f-4d transition array: W $^{19+}\text{-W}^{27+}$ $E_i\text{=}0.503\text{-}0.881\text{keV}$ Lower T_e range
- 4d-4p transition array: $W^{27+}-W^{43+}$ E_i=0.881-2.210keV Higher T_e range
- Spectral lines are visible when 4d electrons are partially ionized. (E_i=1.132keV for W²⁸⁺ 4s²4p⁶4d¹⁰)
- Pseudo-continuum in low T_e discharges will come from 4f-4d transition.
- Application to plasma diagnostics is entirely difficult in these transitions.

CoBIT (compact EBIT) in NIFS

CoBIT is very compact and easier operatable ion source.

- Electron energy: 0.1-3keV
- Electron current: 10-20mA
- Max. magnetic field: 0.2T operated with Lq. N₂

W(CO)₆

W EUV spectra from CoBIT

• W spectra are observed with line peak shift for W^{19+} to W^{34+} ions when E_e is changed.

Line peak shift for each transition

- Peak shift is well explained by C-R model developed with HULLAC code in configuration mode
- Configuration mode: configuration average energy and total angular momentum J

LHD spectrum analysis from CoBIT (I)

- Two CoBIT spectra with different energies of E=950 and 1370eV are considered.
- Analyzed spectral lines are superposed to simulate LHD spectrum.

13/27

LHD spectrum analysis from CoBIT (II)

• Superposed CoBIT spectrum is compared with LHD spectrum.

14/27

• Basic structure of LHD spectrum can be well explained by CoBIT spectrum.

LHD spectrum analysis from CoBIT (III)

• LHD spectrum in 15-35Å range composes of

5f-4d of $W^{28+}-W^{32+}$ ions 6g-4f of $W^{24+}-W^{28+}$ ions 5p-4d of $W^{28+}-W^{33+}$ ions 5g-4f of $W^{24+}-W^{28+}$ ions

<u>W⁴⁴⁺ 4p-4s</u>

- \bullet W $^{44+}$ is visible when T $_{e}\!\!\geq\!\!2.35 keV\!.$
- W⁴⁶⁺ is the highest ionization stage in NBI discharges of LHD.
- W spectrum from W⁴⁴⁺ and W⁴⁵⁺ at plasma core is simple.

HULLAC code calculation of W⁴⁴⁺ spectra

60

T_e=2.35keV

T_e=2.7keV

70

70

- W⁴⁴⁺ spectra near 60Å are calculated by HULLAC code.
- Configuration interaction between $4s^{21}S_0$ and $4p^{21}S_0$ enhances intensity of

 W^{44+} line $4p^{2} {}^{1}S_{0}$ and $4s4p {}^{1}P_{1}$ at 62.0Å.

- W^{44+} is not observed at 62.0Å in T_e=2.35keV whereas W^{44+} appears at 60.6Å.
- W⁴⁵⁺ at 62.1Å is visible when T_e is higher (=2.7keV).
- Effect of configuration interaction is not so large for $W^{44+} 4p^2$ - 4s4p line at 62.0Å.

Impurity transport code calculation

• Local impurity density, n_q, is determined by continuity equation in cylindrical geometry.

$$\frac{\partial n_q}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}\left(r\Gamma_q\right) - \left(\alpha_q + \beta_q\right)n_e n_q + \beta_{q+1}n_e n_{q+1} + \alpha_{q-1}n_e n_{q-1}$$

(α , β : ionization and recombination rate coefficients used ADPAK code)

• Radial impurity flux, Γ_q , is expressed by diffusive/convective model;

$$\Gamma_q = -D\frac{\partial n_q}{\partial r} + n_q V$$

(D, V : diffusion coefficient and convective velocity)

- W^{q+} distribution at plasma core is not sensitive to reasonable D and V ranges.
- It is much affected by the reliability of ionization and recombination rates.

Temperature dependence of W⁴⁴⁺ line

• T_e dependence of W⁴⁴⁺ line intensity is analyzed using T_e recovery phase after W pellet injection (4.4 \leq t \leq 4.8s).

• Peak intensity of W^{44+} is observed at $T_e=2.8$ keV, whereas the peak abundance of W^{44+} is predicted at $T_e=4.5$ keV by the impurity transport code calculation.

Radial profile of W⁴⁴⁺ emission

• Vertical profile of W is measured with a space-resolved EUV spectrometer.

Vertical profile is reconstructed into local emissivity as a function of ρ.
Normalized radius: ρ=r/<a>, plasma volume: V_p=2πR×π<a>²
<a>, R, r: minor radius, major radius and radial position of cylindrical torus

Effect of CI on W⁴⁴⁺ emission coefficient

- Configuration interaction (CI) of W⁴⁴⁺ line gives a clear difference in the emission coefficient.
- Emission coefficient with CI is about 70% larger than that without CI.
- But radial emissions of W⁴⁴⁺ give a very similar profile between the two cases.
- Wavelength of W⁴⁴⁺ clearly changes between the two cases.

HULLAC with CI: 60.6Å HULLAC w/o CI: 61.2Å EBIT, tokamak: 60.87, 60.93Å LHD: (60.81Å)

Quantitative analysis of W⁴⁴⁺

- Uncertainty of recombination rate coefficient is ignored in the analysis.
- W⁴⁴⁺ profile calculated from impurity transport code agreed with experimental profile only in the plasma core.
- It suggests W⁴⁴⁺ line is blended with W line from lower ionization stage.
- Analysis indicates the density of W^{44+} ion, $n(W^{44+})$: $n(W^{44+})/n_e=1.4x10^{-4}$ with CI, $n(W^{44+})/n_e=2.4x10^{-4}$ w/o CI.
- Total W density: $n_W/n_e=8.8 \times 10^{-4}$ with CI, $n_W/n_e=1.5 \times 10^{-3}$ w/o CI
- Total radiation from W is estimated to be roughly 5MW from average ion model.

Spectral modeling for W ions

- Modeling of W ions is attempted for EUV spectra at 40-70Å.
- Collisional-radiative model has been constructed for W^{q+} ions with q=20 45.
- Maxwellian electron velocity distribution is assumed.
- Atomic data are calculated by HULLAC code.
- Excited fine structure levels with *n* up to 6 (*l*<5) are considered;

2,000 - 26,000 levels examined for one ion.

- Recombination processes are not included.
- UTA at 45-55Å: 4d-4p and 4f-4d transitions UTA at 55-65Å: 4d-4p, 4f-4d, and 5d-4f transitions of W⁹⁺ with q<38.
- Modeling of W including recombination has been also developed to calculate ionization balance, while spectral modeling is difficult.

Observation of M1 transition from W²⁶⁺

• M1 transition is identified as $4s^24p^64d^{10}4f^2 {}^{3}H_5 - {}^{3}H_4$ at ground state of W^{26+} ion.

Present results	Previous experiment (EBIT)	Theory
3893.7(4)Å	3894.1(6)Å ^a , 3893.5(3)Å ^b	3884.3Å ^c (MCDF)
3899.1(4)Å	Not available	Not available

^aCoBIT, A.Komatsu et al. Phys.Scr. **T144** (2011) 014012, ^bTokyo-EBIT, H. Watanabe et al. Can.J.Phys. **90** (2012) 497, ^cgrasp2K, X.-B.Ding et al. J.Phys.B **44** (2011) 145004.

3898

Wavelength (Å)

- Wavelength is determined by Gaussian fitting.
- Central emission at 3894Å indicates a visible line from highly charged ion.
- M1 is useful for diagnostics and atomic structure modeling.

0.5

0.0

-0.5

0.5

-0.5

3890

(E 0.0 Z f14(3.55-3.69s)

f15(3.8-3.94s)

After W pellet

3894

Importance of M1 transition

Atomic physics

- Strong relativistic effect in high-Z elements
- Transition from L-S coupling to J-J coupling
- Reconstruction of atomic structure of high-Z ions is possible based on M1 transition observation.

Diagnostics of alpha particle for ITER burning plasmas

- M1 intensity is sensitive to high-energy ions.
- Ratio of E1 to M1 for F-like ions is calculated for a-particle diagnostics of ITER.
- Enhancement of M1 intensity by proton collision is very large due to high T_i.
- Small effect of proton impact and large effect of α -particle impact are necessary for M1.

Visible spectroscopy of W

W visible line from LHD

• W plate inserted into plasma edge boundary

Red: Direct observation of W plate at 4.5-U port Gray: BKGD emission from divertor region at 10-O port

W visible lines from ablation cloud of impurity pellet

- Ablation cloud of cylindrical carbon pellet with W (1.2mm^Lx1.2mm[¢], 100≤V_p≤300m/s) Parameters: T_e=2.5eV, n_e=5x10¹⁶cm⁻³ for CII, T_e=3.0eV, n_e=5x10¹⁴cm⁻³ for CIII
- Several lines denoted with arrows are identified by NIST data table.
- WI line at 4009Å is not strong.

<u>Summary</u>

- W spectroscopy in LHD has started from FY 2011.
- W spectra from LHD have been observed in visible, VUV and EUV ranges.
- UTA spectrum in 15-35Å is well analyzed based on CoBIT spectra.
- Radial profile of Zn-like W⁴⁴⁺ is quantitatively analyzed with HULLAC code.
- W density to electron density of 8.8x10⁻⁴ is reasonably obtained as initial trial.
- The present result indicates that W⁴⁴⁺ and W⁴⁵⁺ can be used for plasma diagnostics.
- Modeling of W spectra has been also started by considering 20,000 sublevels.
- Modeling including recombination effect also begins to study.
- M1 transition is observed from W²⁶⁺ ion.
- A large number of visible W lines are observed from pellet ablation cloud.

For more reliable analysis of W;

- Improvement of ionization and recombination rates
- Modeling of W spectra to explain the experiment
- More accurate wavelength calculation
- Further line identification in the whole wavelength range of 10-7000Å

Impurity pellet injection

• Various cylindrical impurity pellets have been injected to LHD for confinement improvement and diagnostic use.

6≤Z≤74 0.3mm≤L≤2.0mm

