Precise calculation of transition frequencies of hydrogen and deuterium based on a least-squares analysis

Ulrich D. Jentschura,1,2 Svetlana Kotochigova,1 Eric-Olivier Le Bigot,1,3 Peter J. Mohr,1 and Barry N. Taylor1
1National Institute of Standards and Technology, Mail Stop 8401, Gaithersburg, MD 20899-8401, USA
2Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
3Laboratoire Kastler Brossel, École Normale Supérieure et Université Pierre et Marie Curie, Case 74 4, pl. Jussieu, 75005 Paris, France
(Dated: April 19, 2005)

Theoretical values of transition frequencies of hydrogen and deuterium are given, based on the most accurate measurements together with the results of recent quantum electrodynamics calculations. The frequencies are evaluated by a method that is shown to be equivalent to enlarging the 2002 CODATA least-squares adjustment of the fundamental constants to calculate additional energy levels. In this way, optimal predictions for the transition frequencies consistent with the values of the constants and their correlations are made. These frequencies are available on the Web at physics.nist.gov/hdel.

PACS numbers: 12.20.Ds, 31.30.Jv, 06.20.Jr, 31.15.-p

In the past decade there have been significant advances in both the measurement and theory of transition frequencies in hydrogen and deuterium. With the advent of frequency-comb metrology, the progress in measurements has accelerated to the extent that the uncertainty in the experimental value of the 1S−2S frequency in hydrogen has decreased by three orders of magnitude in about ten years [1]. Many other precision measurements of transitions in hydrogen and deuterium with principal quantum number \(n \) up to 12 have been made and are listed in Table I, together with the 1S−2S frequency [1–10]. In addition, precise measurements have been made involving states of hydrogen with \(n = 27 \) to 30 [11].

Further advances may be anticipated. For example, additional improvement in the accuracy of the measurement of the 1S−2S transition is expected [12], an experiment to measure transitions from the 1S state to states with \(n = 3 \) is underway [13], and two additional groups plan to make precision measurements from the 2S state to higher excited states [14, 15], one of these using ultra-cold hydrogen [15].

Efforts to develop the theory of the spectra of hydrogen and deuterium contributed to the formulation of quantum mechanics in the 1920s and subsequently to quantum electrodynamics (QED) in the late 1940s. Since then, there has been steady progress in the accuracy of theoretical calculations which has continued up to the present [16, 17]. In recent work, there has been a reduction of about three orders of magnitude in the uncertainty of calculations of the one-photon self energy, the largest QED correction to hydrogenic energy levels [18–22], and a similar improvement has recently been made in the two-photon QED calculations [23–26].

This combined progress in experiments and calculations has led to a decrease in the relative standard deviation of the CODATA recommended value of the Rydberg constant from \(7.5 \times 10^{-8} \) in the 1973 adjustment to \(6.6 \times 10^{-12} \) in the 2002 adjustment [27, 28].

It is of interest to have accurate calculations of hydrogen and deuterium transition frequencies for comparison to existing and new experimental values, for both frequency standards applications, and as tests of QED. In this letter, we give theoretical values for a number of such transition frequencies that are meant to be best values consistent with currently available experimental and theoretical information. Such calculated values for the transitions in Table I follow from the results of the 2002 CODATA least-squares adjustment of the fundamental constants and are listed in that table. Of course, the calculated value of the 1S−2S transition in hydrogen should not be viewed as a theoretical prediction, because the least-squares adjustment determines values of the adjusted constants so that the calculated frequency is essentially equal to the very precise measured value. The number in parentheses with each value is the standard uncertainty in the last two figures. Hyperfine structure effects are not included in the quoted numbers.

For levels not included in the 2002 adjustment, the best predicted values could be obtained by carrying out an enlarged version of the least-squares adjustment that includes new energy levels of hydrogen and deuterium, in addition to the transition frequencies and the rest of the data included in the original adjustment [28–30]. We will show that the values and uncertainties of the new levels that would be obtained from such an enlarged least-squares adjustment are perturbed by the covariances of these levels with levels in the original adjustment. We will also show that the levels with these perturbations can be calculated directly from the results of the 2002 adjustment without actually carrying out an enlarged adjustment.

Theoretical values for the energy levels in hydrogen and deuterium are determined mainly by the Dirac eigenvalue, QED effects such as self energy and vacuum polarization, and nuclear size and motion effects. The energy level \(E_i \) of state \(i \) can be written as a function of the fundamental constants and an additional adjusted constant \(\delta_i \) which takes into account the uncertainty in the theory. For example, for the case in which \(i \) is a state of hydrogen, we have

\[
E_i = H_c \[R_{\infty}, \alpha, A_c(e), A_c(p), R_p \] + \delta_i, \tag{1}
\]

where the constants that appear as arguments of the function...
TABLE I: Transition frequencies in hydrogen ν_H and in deuterium ν_D used in the 2002 CODATA least-squares adjustment of the values of the fundamental constants and the calculated values. Hyperfine effects are not included in these values.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Frequency interval(s)</th>
<th>Reported value ν/kHz</th>
<th>Calculated value ν/kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niering et al. [1]</td>
<td>$\nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>2 466 061 413 187.103(46)</td>
<td>2 466 061 413 187.103(46)</td>
</tr>
<tr>
<td>Weitz et al. [2]</td>
<td>$\nu_D(1S_{1/2} - 2S_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>4 797 338(10)</td>
<td>4 797 331(82)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(1S_{1/2} - 2S_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>6 490 444(24)</td>
<td>6 490 129(82)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(1S_{1/2} - 2S_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>4 801 693(20)</td>
<td>4 801 710(20)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(1S_{1/2} - 2S_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>6 494 811(41)</td>
<td>6 494 831(41)</td>
</tr>
<tr>
<td>Huber et al. [3]</td>
<td>$\nu_D(1S_{1/2} - 2S_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>670 994 334.64(15)</td>
<td>670 994 334.64(15)</td>
</tr>
<tr>
<td>de Beauvoir et al. [4]</td>
<td>$\nu_D(2S_{1/2} - 8S_{3/2})$</td>
<td>770 649 350 012.0(8.6)</td>
<td>770 649 350 016.1(2.8)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 8S_{3/2})$</td>
<td>770 649 504 450.0(8.3)</td>
<td>770 649 504 449.1(2.8)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 8S_{3/2})$</td>
<td>770 649 561 584.2(6.4)</td>
<td>770 649 561 578.2(2.8)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 8S_{3/2})$</td>
<td>770 859 041 245.7(6.9)</td>
<td>770 859 041 242.6(2.8)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 8S_{3/2})$</td>
<td>770 859 195 701.6(6.3)</td>
<td>770 859 195 700.3(2.8)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 8S_{3/2})$</td>
<td>770 859 252 849.5(5.9)</td>
<td>770 859 252 845.1(2.8)</td>
</tr>
<tr>
<td>Schwob et al. [5]</td>
<td>$\nu_H(2S_{1/2} - 12D_{3/2})$</td>
<td>799 191 710 472.7(9.4)</td>
<td>799 191 710 481.9(3.0)</td>
</tr>
<tr>
<td></td>
<td>$\nu_H(2S_{1/2} - 12D_{3/2})$</td>
<td>799 191 727 403.7(7.0)</td>
<td>799 191 727 409.1(3.0)</td>
</tr>
<tr>
<td></td>
<td>$\nu_H(2S_{1/2} - 12D_{3/2})$</td>
<td>799 409 168 038.0(8.6)</td>
<td>799 409 168 041.7(3.0)</td>
</tr>
<tr>
<td></td>
<td>$\nu_H(2S_{1/2} - 12D_{3/2})$</td>
<td>799 409 184 966.6(6.8)</td>
<td>799 409 184 973.4(3.0)</td>
</tr>
<tr>
<td>Bourzeix et al. [6]</td>
<td>$\nu_D(2S_{1/2} - 6S_{1/2}) - \nu_H(1S_{1/2} - 3S_{1/2})$</td>
<td>4 197 604(21)</td>
<td>4 197 600(3.2)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 6S_{1/2}) - \nu_H(1S_{1/2} - 3S_{1/2})$</td>
<td>4 699 099(10)</td>
<td>4 699 105(4.2)</td>
</tr>
<tr>
<td>Berkeland et al. [7]</td>
<td>$\nu_D(2S_{1/2} - 4P_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>4 664 209(15)</td>
<td>4 664 254(1.7)</td>
</tr>
<tr>
<td></td>
<td>$\nu_D(2S_{1/2} - 4P_{1/2}) - \nu_H(1S_{1/2} - 2S_{1/2})$</td>
<td>6 035 373(10)</td>
<td>6 035 380(1.7)</td>
</tr>
<tr>
<td>Hagley and Pipkin [8]</td>
<td>$\nu_D(2S_{1/2} - 2P_{3/2})$</td>
<td>9 911 200(12)</td>
<td>9 911 196(8.4)</td>
</tr>
<tr>
<td>Lundeen and Pipkin [9]</td>
<td>$\nu_D(2P_{1/2} - 2S_{1/2})$</td>
<td>1 057 845.0(9.0)</td>
<td>1 057 844.7(2.4)</td>
</tr>
<tr>
<td>Newton et al. [10]</td>
<td>$\nu_H(2P_{1/2} - 2S_{1/2})$</td>
<td>1 057 862(20)</td>
<td>1 057 844.7(2.4)</td>
</tr>
</tbody>
</table>

H_i are listed in Table II. Because the values of the constants in Eq. (1), including δ_i, result from a least-squares adjustment, they are correlated, particularly those for R_∞ and R_p, which have a correlation coefficient of 0.996. The uncertainty of the calculated value for the 1S–2S frequency in hydrogen is increased by a factor of about 500 if such correlations are neglected. The function H_i also depends implicitly on c and the Planck constant h. However, these constants are not displayed as variables, because c is a fixed number, and the frequencies $(E_i - E_f)/h$ are essentially independent of h. Levels in deuterium are given as similar functions with p replaced by d.

The theory represented by the function H_i in Eq. (1) is described in detail in Appendix A of Ref. [28], which provides a review of the relevant calculations. Much of that information is in the form of equations that are valid for any state, with the exception of tables of data that only have entries for the levels included in the 2002 CODATA adjustment. Enlarged versions of those tables with data for all states with $n \leq 200$ are available on the NISt Physics Laboratory Web site at physics.nist.gov/hdel. Estimates of the theoretical uncertainties of the function H_i, represented by the constant δ_i in Eq. (1), are also given in Appendix A of Ref. [28]. The estimated value of δ_i is $\delta_i(\nu_0) = 0$, because the theoretical expression for the levels includes all known contributions. However, the estimated uncertainty $u[\delta_i(\nu_0)]$ is not zero, and there are significant covariances between the various δ_i that take into account the expected patterns in the uncertainties. For example, for S states there are components of uncertainty with the functional form C/n^3, where C is a common unknown constant, and there are components of uncertainty common to hydrogen and deuterium levels with the same quantum numbers. The theoretical uncertainties and covariances are included in the least-squares adjustment as input data for the adjusted variables δ_i.

The enlarged least-squares adjustment is formulated here along the lines described in Refs. [30] and [29]. New energy levels E_i to be determined are added to the adjustment, along with the corresponding theoretical expressions of the form in Eq. (1), and for each added level not among those in Table I, a new adjusted variable δ_i is added. The updated column vector

The enlarged least-squares adjustment is formulated here along the lines described in Refs. [30] and [29]. New energy levels E_i to be determined are added to the adjustment, along with the corresponding theoretical expressions of the form in Eq. (1), and for each added level not among those in Table I, a new adjusted variable δ_i is added. The updated column vector
of input data \(Q_u \), matrix of their covariances \(V_u \), and column vector of variables \(Z_u \) are written in block form as

\[
Q_u = \begin{pmatrix} Q & Q_\delta & Q_E \end{pmatrix}; \quad V_u = \begin{pmatrix} V & T & 0 \\ T^T & S & 0 \\ 0 & 0 & V_E \end{pmatrix}; \quad Z_u = \begin{pmatrix} Z \\ Z_\delta \\ Z_E \end{pmatrix},
\]

(2)

where \(Q, V, \) and \(Z \) are the corresponding sets of quantities used in the 2002 least-squares adjustment, \(Q_\delta \) is the set of theoretical data \(\delta(0) \) for the new variables \(\delta_1 \), \(Z_\delta \) is the new set of adjusted variables \(\delta \), and \(Q_E \) is input data for the new energy levels \(E_l \). In \(V_u \), where \(\text{cov}(Q_u, Q_u) \), \(S \) and \(T \) are the sets of theoretical covariances involving the new \(\delta \), and \(V_E \) is the set of covariances of the new levels \(E \). Since the input data for the new levels are unknown, we simply assume that the uncertainties are very large and that there are no correlations among them or with the rest of the input data. This yields the blocks of zeros in \(V_u \) and results in \(V_E \) being diagonal.

The input data and adjusted variables are related by the set of observational equations given by

\[
Q_u = F_u(Z_u); \quad \begin{pmatrix} Q \\ Q_\delta \\ Q_E \end{pmatrix} = \begin{pmatrix} F(Z) \\ Z_\delta \\ E(Z_u) \end{pmatrix},
\]

(3)

where the dot over the equal sign indicates that the equation represents the ideal relations between the input data and the adjusted constants which are not simultaneously satisfied, since the set of equations is overdetermined. In Eq. (3), \(F \) is the set of functions in the observational equations of the 2002 adjustment, and \(E \) is the set of expressions for the new energy levels of the form in Eq. (1). The observational equations are linearized by writing the Taylor series

\[
Q_u = F_u(Z_u^{(0)}) + A_u(Z_u - Z_u^{(0)}) + \cdots,
\]

(4)

where \(A_u \) is the matrix of derivatives

\[
A_{uij} = \frac{\partial F_u(Z_u^{(0)})}{\partial Z_u^{(0)}}; \quad A_u = \begin{pmatrix} A & 0 \\ 0 & I \\ B & C \end{pmatrix},
\]

(5)

and neglecting higher-order terms. In Eq. (5), \(A \) is the matrix of derivatives from the 2002 adjustment, \(I \) is the identity matrix, and \(B \) and \(C \) are derivatives of the new energy levels with respect to the old and new variables, respectively. The truncated expression in Eq. (4) corresponds to

\[
Y_u = A_u X_u,
\]

(6)

where \(Y_u = Q_u - F_u(Z_u^{(0)}) \) and \(X_u = Z_u - Z_u^{(0)} \).

The update adjustment starts with

\[
Z_u^{(0)} = \begin{pmatrix} \hat{Z} \\ 0 \end{pmatrix},
\]

(7)

where \(\hat{Z} \) is the final vector of constants from the 2002 adjustment and

\[
Y_u = \begin{pmatrix} \hat{Y} \\ Y_\delta \\ Y_E \end{pmatrix} = \begin{pmatrix} Q - F(\hat{Z}) \\ Q_\delta - Z_\delta^{(0)} \\ Q_E - E(Z_u^{(0)}) \end{pmatrix},
\]

(8)

where \(\hat{Y} \) is the final value of \(Y \) from the original adjustment and \(Y_\delta = 0 \). The solution \(X_u \), the value of \(X_u \) that minimizes \((Y_u - A_u X_u)^T V_u^{-1} (Y_u - A_u X_u) \), is

\[
\hat{X} = A_u^{-1} \hat{Y} + V_u^{-1} Y_u;
\]

(9)

\[
G_u = (A_u V_u^{-1} A_u)^{-1}.
\]

(10)

The covariance matrix of the solution \(\hat{X} \) is \(G_u \), and its calculation is the key to the update. The Schur-Banachiewicz inverse formula applied to the upper-left four blocks of the matrix \(V_u \) in Eq. (2) gives \([31, 32] \)

\[
V_u^{-1} = \begin{pmatrix} V^{-1} + V^{-1} T R T V^{-1} & -V^{-1} T R \\ -R T V^{-1} & V^{-1} \end{pmatrix},
\]

(11)

where \(R = (S - T^T V^{-1} T)^{-1} \). For increasing uncertainties of the unknown input data for the new levels \(E_l \), we have \(V^{-1} \rightarrow 0 \), and we work in this limit. A direct calculation from Eqs. (5), (9), and (10), with \(V_E^{-1} = 0 \), yields

\[
G_u^{-1} = \begin{pmatrix} G^{-1} + G^{-1} U R U^T G^{-1} & -G^{-1} U R \\ -R U^T G^{-1} & R \end{pmatrix},
\]

(12)

where \(G = (A^T V^{-1} A)^{-1} \) is the matrix from the 2002 adjustment and \(U = G A^T V^{-1} T \). Evidently, Eq. (11) is the Schur-Banachiewicz inverse expression for

\[
G_u = \begin{pmatrix} 0 \\ U^T \end{pmatrix} P,
\]

(13)

provided \(R = (P - U^T G^{-1} U)^{-1} \), that is, if

\[
P = S - T^T V^{-1} T + U^T G^{-1} U = S + D T,
\]

(14)

where \(D = T^T V^{-1} (A G A^T V^{-1} - I) \). This result for \(G_u \) in terms of \(G \) means that the exact result of the enlarged least-squares adjustment can be obtained from results of the original least-squares adjustment with a relatively simple calculation. That is, the matrix inversions needed for the enlarged adjustment have effectively been carried out exactly, with the results explicitly expressed in terms of the matrices and vectors of the original adjustment. In particular,

\[
G_u A_u^T V_u^{-1} = \begin{pmatrix} (G A^T V^{-1} & 0 \\ 0 & I \end{pmatrix},
\]

(15)

so that

\[
\hat{X} = \begin{pmatrix} (G A^T V^{-1} [Q - F(\hat{Z})] \\ D [Q - F(\hat{Z})] \end{pmatrix} = \begin{pmatrix} 0 \\ D \hat{Y} \end{pmatrix},
\]

(16)

or for the adjusted constants

\[
\hat{Z} = Z_u^{(0)} + \hat{X} = \begin{pmatrix} \hat{Z} \\ D \hat{Y} \end{pmatrix}
\]

(17)

with covariance matrix \(\text{cov}(\hat{Z}_u) = G_u \). More importantly, Eqs. (12) and (16) show that both the values and uncertainties of the new levels being calculated are influenced by their
TABLE III: Calculated transition frequencies in hydrogen and deuterium from the 1S state to the 3S and 3D excited states.

<table>
<thead>
<tr>
<th>Excited state</th>
<th>Hydrogen ν_E/kHz</th>
<th>Deuterium ν_D/kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3S$_{1/2}$</td>
<td>2922743278671.6(1.4)</td>
<td>2923538534391.8(1.4)</td>
</tr>
<tr>
<td>3D$_{3/2}$</td>
<td>2922746208551.21(70)</td>
<td>2923541464741.56(72)</td>
</tr>
<tr>
<td>3D$_{5/2}$</td>
<td>2922747291888.42(70)</td>
<td>2923542548374.47(72)</td>
</tr>
</tbody>
</table>

TABLE IV: Calculated transition frequencies in hydrogen and deuterium from the 2S state to various S and D excited states.

<table>
<thead>
<tr>
<th>Excited state</th>
<th>Hydrogen ν_E/kHz</th>
<th>Deuterium ν_D/kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3S$_{1/2}$</td>
<td>456681865484.5(1.4)</td>
<td>456806126870.1(1.4)</td>
</tr>
<tr>
<td>3D$_{3/2}$</td>
<td>456684795364.11(69)</td>
<td>456809057219.82(69)</td>
</tr>
<tr>
<td>3D$_{5/2}$</td>
<td>456685878701.32(69)</td>
<td>456810140852.73(69)</td>
</tr>
<tr>
<td>4S$_{1/2}$</td>
<td>616520150628.5(2.0)</td>
<td>616687903590.7(2.0)</td>
</tr>
<tr>
<td>4D$_{5/2}$</td>
<td>616521386393.2(1.7)</td>
<td>616689139553.7(1.7)</td>
</tr>
<tr>
<td>6S$_{1/2}$</td>
<td>730690017268.2(2.6)</td>
<td>730888835622.9(2.6)</td>
</tr>
<tr>
<td>6D$_{3/2}$</td>
<td>730690383556.0(2.5)</td>
<td>730889201769.5(2.5)</td>
</tr>
<tr>
<td>10S$_{1/2}$</td>
<td>789144778108.3(2.9)</td>
<td>789359501915.5(2.9)</td>
</tr>
<tr>
<td>10D$_{3/2}$</td>
<td>789144857175.5(2.9)</td>
<td>789359580995.3(2.9)</td>
</tr>
<tr>
<td>14S$_{1/2}$</td>
<td>805249615638.3(3.0)</td>
<td>805468720951.9(3.0)</td>
</tr>
<tr>
<td>14D$_{3/2}$</td>
<td>805249643852.1(3.0)</td>
<td>805468749770.2(3.0)</td>
</tr>
</tbody>
</table>

where the covariances with the levels in the original 2002 least-squares adjustment, while the variables from that adjustment are not changed at all. Also, since the only adjusted variables that change in the update appear linearly in Eq. (3), no iteration of the update is needed to reach the final result.

The energy levels and their covariances are thus given by

$$Q_E = E(\hat{Z}_a)$$

$$\text{cov}(Q_E) = BB^T + CU^T + BU^T + CPC^T,$$

where the latter result is the lower-right block of the relation $\text{cov}(Q_a) = A_0G_0A_0^T$. The result from Eq. (17) for a transition frequency ν_{lm} and its standard uncertainty $u(\nu_{lm})$ for the transition $l \rightarrow m$ is given by

$$h u(\nu_{lm}) = \left[u^2(Q_{Ei}) + 2 \text{cov}(Q_{Ei}, Q_{Em}) + u^2(Q_{Em}) \right]^{1/2}$$

where $u^2(Q_{Ei}) = \text{cov}(Q_{Ei}, Q_{Ei}), i = l, m$.

Calculated transition frequencies in hydrogen and deuterium based on this result, starting from the results of the 2002 least-squares adjustment, are given in Tables III and IV. Data from that adjustment needed for such a calculation are available on the Web at physics.nist.gov/ constants. The frequencies in Tables III and IV all have relative uncertainties that are smaller than the relative uncertainty of the Rydberg constant, as a result of correlations. A database that gives the frequency of any transition between levels with $n \leq 200$ based on the calculations described here is maintained on the Web at physics.nist.gov/rdel.

Helpful conversations with G. W. Stewart are acknowledged by one of the authors (PJM).