Quantity	Symbol	Value	Unit
hyperfine transition frequency of ¹³³ Cs	$\Delta \nu_{\rm Cs}$	9192631770	Hz
speed of light in vacuum	c	299792458	${ m m~s^{-1}}$
Planck constant*	h	$6.62607015 imes10^{-34}$	$ m JHz^{-1}$
	\hbar	$1.054571817\ldots imes 10^{-34}$	Js
elementary charge	e	$1.602176634 imes 10^{-19}$	С
Boltzmann constant	k	1.380649×10^{-23}	$\mathrm{J}~\mathrm{K}^{-1}$
Avogadro constant	$N_{\rm A}$	$6.02214076 imes10^{23}$	mol^{-1}
luminous efficacy	$K_{\rm cd}$	683	$ m lm~W^{-1}$
relative atomic mass [†] of ¹² C	$A_{\rm r}(^{12}{\rm C})$	12	

Fundamental Physical Constants — Defined constants

* The energy of a photon with frequency ν expressed in unit Hz is $E = h\nu$ in J. Unitary time evolution of the state of this photon is given by $\exp(-iEt/\hbar)|\varphi\rangle$, where $|\varphi\rangle$ is the photon state at time t = 0 and time is expressed in unit s. The ratio Et/\hbar is a phase.

[†] The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12$ is the atomic mass constant.