Fundamental Physical Constants — Adopted values

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
relative atomic mass ¹ of ¹² C	$A_{\rm r}(^{12}{\rm C})$	12		exact
molar mass constant	$M_{ m u}$	1×10^{-3}	$kg mol^{-1}$	exact
molar mass of ¹² C	$M(^{12}C)$	12×10^{-3}	$kg mol^{-1}$	exact
conventional value of Josephson constant ²	$K_{ m J-90}$	483 597.9	$ m GHz~V^{-1}$	exact
conventional value of von Klitzing constant ³	$R_{\mathrm{K-90}}$	25 812.807	Ω	exact
standard-state pressure		100	kPa	exact
standard atmosphere		101.325	kPa	exact

The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12 = M_u/N_A = 1$ u is the atomic mass constant, N_A is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is $m(X) = A_r(X)$ u and the molar mass of X is $M(X) = A_r(X)M_u$.

² This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

³ This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.