Fundamental Physical Constants — Adopted values

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
molar mass of ¹² C	$M(^{12}\mathrm{C})$	12×10^{-3}	kg mol ⁻¹	(exact)
molar mass constant $M(^{12}C)/12$	$M_{ m u}$	1×10^{-3}	$kg mol^{-1}$	(exact)
conventional value of Josephson	T.	402 505 0	ovv vv-1	
constant ²	$K_{\rm J-90}$	483 597.9	$\mathrm{GHz}\mathrm{V}^{-1}$	(exact)
conventional value of von Klitzing				
constant ³	$R_{\mathrm{K-90}}$	25 812.807	Ω	(exact)
standard atmosphere		101325	Pa	(exact)
standard acceleration of gravity	$g_{ m n}$	9.80665	${ m m~s^{-2}}$	(exact)

The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12 = M_u/N_A = 1$ u is the atomic mass constant, N_A is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is $m(X) = A_r(X)$ u and the molar mass of X is $M(X) = A_r(X)M_u$.

² This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

³ This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.