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We have presented a scheme to allow photon counting at higher rates than is otherwise possible with existing
photon-counting detectors and detection systems. This is done by multiplexing a pool of detectors in a way that
greatly suppresses the effect of the deadtimes of the individual detectors. In our previous work we demonstrated
the advantage of this approach over simply trying to improve the deadtime of an individual detector or using the
type of passively switched system that can be implemented with group of detectors and a tree of beamsplitters.
Here, we present an extension of the theoretical modeling of our actively multiplexed scheme to include effects
that arise solely from the use of detectors that require gating. We see that such detectors exhibit a deadtime
associated with their gate circuitry, independent of whether the detector fires or not, that should be treated
separately from the deadtime due to an actual photodetection. In addition, we present experimental results made
with an improved switch control system and shorter gate deadtime demonstrating an approximate twofold
effective deadtime improvement over our previous demonstration.

Keywords: fast fiber switch; InGaAs single-photon avalanche detector (SPAD); multiplexing; parametric down-
conversion; photon counting

1. Introduction

The interest in single-photon technology is growing
as quantum communication and computation efforts
intensify. These applications place especially difficult
design requirements on the detection of single
photons [1,2]. Quantum key distribution (QKD) is
currently significantly limited by detector character-
istics such as detection efficiency, dark count rate,
timing jitter and deadtime [3,4] and thus would
particularly benefit from improved detectors. Due to
demands for higher-rate secret key production, the
quantum information community is presently
engaged in a number of efforts aimed at improving
detectors for QKD, including improving detector
efficiency [2,5,6], reducing detector timing jitter [7]
and reducing detector deadtime [8]. Moreover, with
the exponential growth of non-classical photon
production rates, the need is increasing for better
photon-counting detection. The major factor imped-
ing the detection rate is deadtime. However, one
cannot just focus on this parameter alone, as often
shorter deadtimes are associated with higher after-
pulsing probabilities. Addressing the need for count-
ing at high rates by reducing deadtime, while other
characteristics of a single-photon counting device are
kept constant or improved, is our aim here.

The idea here relies on the well-established princi-
ple of multiplexing many individual, but imperfect,
components into a system that operates with signifi-
cantly better characteristics. The method of active
multiplexing single-photon detectors is getting more
feasible thanks to the current attempts to integrate
detectors in microchip arrays [9–11].

Reducing the effects of deadtime is the most direct
way to achieve higher detection rates. Deadtime is

typically defined as the time a photon-counting

detector needs to recover after it registers a photon

and is ready to register another one. This recovery time

may be due to the physical properties of the detector

and/or the pulse processing electronics. In photomul-

tiplier tubes (PMTs) for example, the detector dead-

time is almost negligible, so the electronics ultimately

sets the deadtime. In single-photon avalanche photo-

diodes (SPADs), however, because of the avalanche

effect combined with carrier trapping in the detection

region, the detector deadtime dominates. Indeed, in

a SPAD, the avalanche must be quenched and the

carriers removed from the detection zone before the

detector is ready for another photon, resulting in

a deadtime in the range of few tens of nanoseconds to

about tens of microseconds. The rate of carrier

removal depends on the concentration of defects and
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impurities of the semiconductor structure and is

process dependent. Our approach deals with this

problem by using fast processing electronics to

reduce the effect of these detector non-idealities. We

believe that this is a much easier route to faster

counting than to push for significant improvements in

individual SPADs by efforts such as reducing trap

concentrations. In addition, it should be possible to

build our multidetector system with associated electro-

nics integrated together on the same chip.
The acceptable peak rate of detection for a photon

counting solution is application specific. Obviously,

the higher the count rate, the longer the time the

detection system is dead, or unable to detect a new

event. Therefore, the higher the count rate, the larger

the nonlinearity of detection. We define the deadtime

fraction (DTF) as the ratio of missed- to incident-

events. Alternately, in the case of a time-independent

Poissonian continuous-wave (cw) source, it may

be defined as the fraction of the time the detector

spends in its recovery state (where it is effectively blind

to incoming photons) to the total elapsed time.

Furthermore, we assume DTF¼ 10% to be

a reasonable limit for most detection applications.
Our scheme to improve detection rates takes an

array of photon-counting detectors and operates them

as a single unit, a detection system. Most importantly,

this design involves an intelligent multiplexing, i.e.

keeping track of each single SPAD state (dead or alive),

and switches the single photon input to a SPAD that is

known to be alive. We have shown that this arrange-

ment allows overall photon detection at higher rates

than would be possible if the detectors were operated

individually (or even in a passive detector tree

configuration), while maintaining comparable DTFs.
The theoretical study shows that the proposed

scheme is superior to other passive detector arrange-

ments aimed at improving deadtimes. In particular, we

compare the proposed arrangement DTFs to those of

detector tree arrangements, as well as to the perfor-

mance of a (hypothetical) single detector with reduced

deadtime.
Our first theoretical study considered the simple

case of a system with negligible switching time [12],

while our subsequent analysis considered the more

realistic case of a system with a non-negligible switch-

ing time [13]; in this paper we extend further our

theoretical modeling by including in our analysis the

additional ‘deadtime’ contributions resulting from

when the (heralded) detector is gated, but no detection

is registered. We refer to these as empty gate events.

In addition to deadtime improvement that leads to

higher photon counting rates, in this paper we also

discuss and compare other improvement schemes for

relevant characteristics such as afterpulsing and dark

count rates.
Furthermore, we report on a proof of principle

experiment of an actively switched multiplexed single-
photon detector system. In this context we present

a new circuit designed specifically for our optical
switching application, reducing significantly the
switching time with respect to the previous version of

the multiplexed system [13], as well as with respect to
individual detectors with improved deadtimes or

simple detector trees. We demonstrate that the best
scheme to reduce DTF and increase photon count
rates, along with the added bonus of improving the

signal to background ratio and reducing afterpulsing,
is the active switching arrangement that uses an
external logic circuit that remembers the order in

which the detectors fired.

2. Detector arrangements

To judge the performance of various arrangements,
deadtime improvement alone is not sufficient.

Performance has to be weighed together with changes
of other important characteristics, such as afterpulsing
probability and dark count rate. In this study we

consider the following detector arrangements
(Figure 1(b)) aimed at decreasing deadtime: (i) an
improved detector (perhaps hypothetical) that has

a deadtime N times shorter than a conventional
SPAD; (ii) a tree of N conventional detectors
connected through a series of passive beam splitters;

(iii) an actively controlled array of N conventional
detectors connected via a 1-by-N optical switch.

The latter detection arrangement relies on the
rather obvious fact that, while a detector has

a significant deadtime when it does fire, it has no
deadtime when it does not fire. (In practice this is
not quite true, but as we shall see we now handle

this directly.) A switch control circuit monitors
which detectors have fired recently and are thus
dead, and then routes subsequent incoming pulses to

a detector that is ready. As we showed in our
previous works [12,13], this system allows an
arrangement of N detectors to be operated at

a significantly higher detection rate than N times
the detection rate of an individual detector, while
maintaining the same DTF.

To understand the process, consider a time-inde-

pendent Poisson (cw) input photon source. At first, all
detectors are ready to detect a photon. The optical
switch is set to direct the first incoming photon to the

first detector of the array. Control electronics
(Figure 1(c)) monitor the output of that detector to
determine when it fires. If the detector does fire, the
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control switches the next incoming light pulse to the
next detector. If the detector does not fire, then the
switch state remains unchanged. The process repeats
with the input always directed to the available live
detector that fired the longest time ago. At high count
rates many of the detectors may fire within a short
period of time and be dead, but, as long as the first
detector recovers to its live state before the last
detector fires, the whole arrangement will still be live
and ready to register an incoming photon. The reason
to choose the detector that did not fire for the longest
time is that, in a typical SPAD, afterpulsing probability
is inversely related to the time the detector was
inactive; hence the overall arrangement will have
a reduced afterpulsing rate. Only when all detectors
have fired within one deadtime of each other will the
system be dead. This scheme would allow for optimum
use of an array of detectors where each detector may
have a different deadtime.

3. Theory of operation: DTF

The theoretical treatment of the intelligent multi-
plexing arrangement is best understood by starting
with the ideal case where electronic switching delay is
negligible as compared to the SPAD’s deadtime. In
practice, however, this is not the case, because switch-
ing can take a sizable fraction of deadtime (from 1% to
10%). Also, another non-ideality is that some SPADs,
especially those that operate at telecom wavelengths,
require gating. After such a gate is received, these

detectors are unable to accept another gate for some
time (i.e. they are effectively dead) even if they did not
fire. Even though the fraction of time when a SPAD
cannot accept another gate is small (�0.5–5% of the
deadtime), the number of gate events is usually many
times (10 or more) larger than the photon detection
events. Therefore, their effect can be significant.

So, let us introduce the different kinds of deadtimes
that are present in our gated and switched detection
system: Td is the nominal deadtime of a single detector
due to detection of a heralded photon; T0, the empty
gate event deadtime, is the time interval when
a detector on the heralded channel is busy after being
gated by a heralding pulse but no photon was detected.
In the presence of a switch, we also have to consider
the switching time Ts, which is the time the switch
control circuit takes to redirect the incoming photon to
the next detector after a heralded detection. In analogy
with the previous paper [13], we introduce an overall
effective deadtime T d(N) of our detection system with N
detectors. T d(N) obviously depends on the different
deadtime contributions T0, Td, Ts and on the heralding
rate �.

In our previous experiment we estimated, from
the experimental data, the DTF using the heuristic
formula [13]

DTF ¼ �registeredT dðN Þ þ �0T0, ð1Þ

where �registered is now the overall rate of counts
registered by our detection system, and �0 is the rate of
empty gate events.

Figure 1. (a) Setup for testing different arrangements of InGaAs SPAD assemblies; (b) three different InGaAs SPAD assemblies;
(c) a schematic of electronic logic to actively control InGaAs assemblies and photon routing.
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For a hypothetical improved detector with

a deadtime N times shorter than a conventional

SPAD and for the case of a tree of N conventional

detectors connected through a series of passive beam

splitters, the effective deadtime has the explicit

expression T d(N)¼Td/N [12,13]. The evaluation

of T d(N) in the case of the actively multiplexed

detection system shown next is the main result of the

theoretical model.
This model considers a scheme based on a cw

(Poissonian) heralded single photon source, and

a gated detection system. The heralding signals are

Poissonian distributed according to P(n)¼ (�T )n�

exp��T/n!, where � is the rate of the heralding signals

and T is the measurement time. These heralding signals

are used to gate the detection system. In the absence of

heralded channel deadtime effects, the number of

heralding counts will be equal to the number of gate

counts. Furthermore, we assume that our detection

system presents a non-unit quantum efficiency; thus,

for each gate count, it observes the heralded event with

only the probability � (a detailed model for � is

presented in Appendix 1).
In the ideal case, i.e. all deadtimes¼ 0, the

probability of having m heralded counts given n gate

counts is B(mjn, �)¼ n!/[m!(n�m)!]�m(1� �)n�m; thus

the probability of having m heralded counts is

Phd(m)¼ (��T )m exp���T/m!. The probability of

having k gate counts that will not produce heralded

counts (an empty gate event) given n gate counts is

B(kjn, 1��)¼ n!/[k!(n� k)!](1� �)k�n�k; thus the prob-

ability of having k empty gate events is

P0(k)¼ [(1� �)�T ]k exp�(1��)�T/k!.
We note that in our previous paper [13] T d(N)

was evaluated with T0¼ 0. In that case, i.e. with

empty gate events not introducing any deadtime

effect, the probability that the detection of the Nth

heralded count occurs in the time interval [t;tþ dt]

is [13]

fNðt,T dðN ÞÞ ¼
ð��ÞN�1½t� ðN� 1ÞT dðN Þ�

N�2

ðN� 2Þ!

� e���½t�ðN�1ÞT dðN Þ��½t� ðN� 1ÞT dðN Þ�dt,

ð2Þ

which is a modified Gamma function and � is the

Heaviside step function with �(x)¼ 1 for x4 0 and 0

otherwise. The total time between the first and the Nth

heralded count during which the detection system is

alive is [t� (N� 1)T d(N)]; thus the mean number of

empty gate events in this time interval is �t¼

(1� �)�[t� (N� 1)T d(N)].
In the case T0 6¼ 0, each empty gate count in the

time interval [t� (N� 1)T d(N)] presents an associated

deadtime T0, and thus the mean number of empty gate
counts is reduced to

�t ¼
ð1� �Þ�½t� ðN� 1ÞT dðN Þ�

1þ ð1� �Þ�T0
: ð3Þ

This term introduces a further deadtime effect. On
average we have an additional deadtime contribution
of �tT0. Thus, the total time interval during which the
detection system is alive between the first and the Nth
heralded count becomes

t� ðN� 1ÞT dðN Þ � �tT0 ¼
ð1� �Þ�½t� ðN� 1ÞT dðN Þ�

1þ ð1� �Þ�T0
:

ð4Þ

This comes from substituting [t� (N� 1)T d(N)] for
[t� (N� 1)T d(N)]/[1þ (1� �)�T0] into Equation (2).
Moreover, by regrouping, we are able to re-write the
probability of detecting the Nth heralded count in the
time interval [t;tþ dt] as

fNðt,T dðN ÞÞ ¼
��

1þð1� �Þ�T0

� �N�1
½t�ðN� 1ÞT dðN Þ�

N�2

ðN� 2Þ!

� exp �
��

1þð1� �Þ�T0
½t�ðN� 1ÞT dðN Þ�

� �

� �½t�ðN� 1ÞT dðN Þ�dt:

ð5Þ

Starting from fN(t, T d(N)), and following the devel-
opment of [13], we get the effective deadtime for N
detectors T d(N) by solving

T dðN Þ ¼ pa,NðT dðN ÞÞTs þ pb,NðT dðN ÞÞðTd � Eb,NðT dðN ÞÞÞ,

ð6Þ

where

pa,NðT dðN ÞÞ ¼

ðþ1
Td�Ts

fNð�t,T dðN ÞÞd�t, ð7Þ

pb,NðT dðN ÞÞ ¼

ðTd�Ts

0

fNð�t,T dðN ÞÞd�t, ð8Þ

and

Eb,NðT dðN ÞÞ ¼

Ð Td�Ts

0 �tfNð�t,T dðN ÞÞd�tÐ Td�Ts

0 fNð�t,T dðN ÞÞd�t
: ð9Þ

In the presence of deadtimes (Td 6¼ 0;Ts 6¼ 0;T0 6¼ 0)
only a subensemble of heralding events is accepted by
the detection system, corresponding to the time
interval during which the system is not dead. In the
following we refer to these accepted heralding events as
gate counts. M is the mean number of gate counts in
the time interval T. Each gate count produces
a heralded count with a probability �, and an empty
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gate count with probability 1� �. The mean number of

heralded counts is �M, and after each heralded count

an effective deadtime T d(N) occurs (�T d(N) heralding

counts are, on average, missed during each effective

dead time �T d(N)). The mean number of empty gate

events is (1� �)M, and after each such event the

detection system is busy (dead) for a time T0, during

which, on average, �T0 heralding counts are missed.

Therefore, we can write the mean number of heralding

counts �T as

�T ¼M½�ð1þ �T dðN ÞÞ þ ð1� �Þð1þ �T0Þ�

¼M½1þ ��T dðN Þ þ ð1� �Þ�T0�: ð10Þ

Thus, the mean number of gate counts in terms of

heralding counts is

M ¼
�T

1þ ��T dðN Þ þ ð1� �Þ�T0
: ð11Þ

We define the DTF of our photon counting

detection system as the ratio of the lost count rate

over the total count rate in the absence of deadtime:

DTF ¼ 1�
M

�T
: ð12Þ

Substituting Equation (11) into Equation (12) we

obtain

DTF ¼
��T dðN Þ

1þ ��T dðN Þ þ ð1� �Þ�T0

þ
ð1� �Þ�T0

1þ ��T dðN Þ þ ð1� �Þ�T0
: ð13Þ

To match theory to the experiment, we note that

the DTF formula Equation (13) adds the effect of

empty gate counts to the traditional deadtime effect

considered in the previous paper [13]. In fact, the

theoretical analysis leading to Equation (13) provides

a rigorous theoretical justification of the heuristic

model for DTF in Equation (1) used in [13]. Figure 2

shows that the incident photon rate for DTF¼ 10%

(a reasonable limit for most detector applications) is

significantly reduced for all arrangements when T0 6¼ 0.

Clearly, empty-gate deadtime should be minimized.

4. Theory of operation: dark counts and afterpulses

While we have so far limited our discussion to

improving DTF, there are, however, other important

features of the detector arrangements that should be

characterized. First, we consider dark counts. For the

purpose of quantitative analysis we assume a standard

SPAD with a dark count rate of unity. We further

assume that all SPADs have the same dark count rate.

In reality dark count rates may vary significantly from

detector to detector, and this can ultimately affect the
design of multidetector arrangements, but here we
ignore this for simplicity. The theoretical scaling of
dark count rate with a number of detectors is presented
in Figure 3. It is clear that an active switching
arrangement is better than a tree configuration for
any number of detectors N4 1.

Now we estimate the afterpulsing probability. To
do so, we start from the fact that the afterpulsing
probability in SPADs is related to the probability of
trapping free carriers in the active detection zone. If
a free carrier survives until the SPAD bias is raised
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above breakdown again, it will start another avalanche

and produce an afterpulse. It has been shown

numerous times that the probability for this

to happen decreases exponentially with SPAD dead-

time [14]. In general, the afterpulse probability of the

multidetector scheme will be reduced because each

detector will have a longer rest time before it is

reactivated.
For the following, we assume negligible afterpulse

probability for the cases when the system has at least

one live detector. We can calculate the probability for

this to happen assuming, as usual, Poisson incoming

photon statistics. For a two-detector arrangement,

the probability to receive one (or more) detectable

photons during a deadtime of a single detector Td is

P(n� 1)¼ 1� exp(��0Td), where �
0 is the rate of the

incoming detectable photons. At this stage, the assem-

bly will switch to the first detector immediately after its

deadtime is over; thus it will afterpulse with its regular

probability. For more than two detectors one writes

Pðn � N� 1Þ ¼ 1� expð��0TdÞ
XN�2
i¼0

ð�0T Þi

i!
: ð14Þ

One sees from this formula and Figure 4 that

the afterpulse probability in the multidetector arrange-

ment will always be lower than that of a single detector

or a detector tree and will depend on a count rate.

(There is no such advantage for a detector tree as in

that case all afterpulses are counted.) This dependence

(in units of afterpulse probability of a single SPAD) is

presented in Figure 4. Thus, the treatment presented

supports the conclusion that active switching arrange-

ments are superior to all other detection arrangements

studied and provide better (or equal) DTFs, after-

pulsing probabilities and dark count rates than a single

SPAD.

5. Optimization of switching time

For our current experiment, we used a specifically
designed fast optical switch driver instead of the
commercial pulse generator used in [13]. Independent
of our verifying experiment, lower switching times
allow for higher count rates at the same DTF level.
Currently, all the delays in electronic processing must
be matched by extra fiber length in the heralded arm
(i.e. before an optical switch). Therefore, by reducing
electronic processing times one can use shorter optical
fiber delay lines, and thus decrease the possibility of
drifts, including polarization drifts, as well as increase
the overall detection efficiency, and therefore increase
the robustness of the assembly. Moreover, one
wants the switching time to be less than the shortest
possible time between trigger events (in our experi-
mental setup this corresponds to a deadtime of
a trigger SPAD that is �50 ns) to match the experiment
to all theoretical assumptions.

The analysis of the setup used in [13] showed that
the longest delay was due to the commercial triggered
pulse generator that operated the switch. To reduce
this delay, we implemented a fast switch driver capable
of producing variable pulse heights. The simplified
schematic of the circuit is shown in Figure 5. This
driver is realized with two transistor differential stages
(T1–T2 and T3–T4). The circuit simply switches the
current I from the dummy load resistor to the electrical
port of the optical switch when the input signal
switches from a low to a high level. The main reason
for using an emitter-coupled circuit is its switching
speed and the capability to easily change the output
amplitude by varying the current I of a voltage
controlled source. In the first prototype the amplitude
of the output voltage could be adjusted from 4 V to 6 V
and the total propagation delay (including rise-time

Figure 5. Optical switch electrical driver schematic.
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and settling) was ’15 ns, which is nearly an order of

magnitude shorter than that obtained with the
commercial pulse generator used in [13].

This circuit therefore allows for testing in the

regime when all trigger pulses can be processed. To
further improve the performance of the control
electronics, we plan to integrate an field programmable

gate array (FPGA) and a driver on a single board.
Having an integrated circuit will improve its speed by

reducing propagation delays. Secondly, the switching
time can be improved if the driver is triggered by

a differential, rather than a single-ended transistor–
transistor logic (TTL) signal, allowing for optimization
of the rise-time of the driver. The development of this

integrated board is underway.

6. Experimental results

To test our model we produced correlated photons at

810 nm and 1550 nm via a parametric down conversion
obtained by pumping a periodically poled MgO-doped
lithium niobate (PPLN) crystal with a cw laser at

532 nm [15]. The visible photons are the heralding
channel that triggers the infrared photon’s arrival at

the InGaAs SPAD assembly-heralded channel
(Figure 1(a)).

Our experiment compares the DTF as a function of
the gate count rate for three detector configurations:

a single detector, a detector tree and an actively
switched arrangement (Figure 1(b)). The latter consists

of an optical switch and a logic circuit (Figure 1(c)),
whose task is to keep track of the order in which

detectors have fired and to route the next input to the
detector that has had the longest time to recover.

To demonstrate the advantage and the feasibility of
active routing of photons, we made a series of DTF

measurements at different gate count rates. Figure 6
shows both the previous measurements [13] and the

new ones obtained with the optimized optical switch
electrical driver, highlighting the decrease in DTF at
a fixed trigger count rate for the multiplexed system,

allowing operation at higher count rates. This illus-
trates that reducing trigger deadtime (as suggested by

the theory, Figure 2) and improving switching time is
very important for DTF reduction. The dramatic
decrease in DTF shown in our latest experiment

represents (Figure 6 lowest two curves) another
important step in optimizing the active switching

technology for multiplexed detection systems.
In Figure 7 we show the measured probability

of observing an accidental count, i.e. a dark count or
an afterpulse, for each gate count for several gate

count rates, in three detection system configurations:
a single InGaAs SPAD, the detector tree arrangement

with two InGaAs SPADs, and the multiplexed system
with two InGaAs SPADs. In all configurations the
InGaAs deadtime was Td¼ 10 ms. As expected from the
analysis in Section 4, the multiplexed detection systems
reduce by about half the total probability of accidental
counts with respect to the beamsplitter tree
arrangement.

7. Conclusion

We have presented the current state of our theoretical
and experimental efforts in support of an intelligent
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Figure 6. DTF versus the overall gate rate for different
detection arrangements. Both the previous data [13] for
a single detector, detector tree and multiplexed system (four
upper curves), and the data obtained with the multiplexed
system with the improved optical switch driver (lowest curve)
are shown. (The color version of this figure is included in the
online version of the journal.)
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management of detector deadtime by use of multi-

plexed detectors. We have expanded our theoretical

treatment to include non-zero switching and empty

gate count deadtime, as well as the usual detector

deadtimes to better account for physical properties of

real-world detectors. We have shown the superiority of

the intelligent management scheme not only in redu-

cing the DTF, the main goal of this study, but also in

reducing afterpulse rates and keeping dark count rates

independent of the number of detectors used.

Furthermore, we have shown an improvement in the

DTF reduction of our proof of principle multiplexed

system realized with the new optical switch electrical

driver over our previous experiment [13].
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Appendix 1

We model the probability � of observing a heralded count

given a gate count following the scheme explained in [15].

In the heralded single-photon source schemes based on

parametric down conversion, such as the one we used in

our experiment, it is well known that a heralded count can be

a true heralded count – due to a photon of the same pair as

the photon in the heralding channel – or it can be an

accidental heralded count – due to a photon belonging to

another pair. We model � to verify whether the multiplexed

detection system experimentally allows a reduction of

accidental heralded counts.

A simple model for the measurement can be

� ¼ pdcð1� �w,I�w,IIÞ þ ð1� pdcÞ½ð1� �w,IÞ

þ �w,I�þ �w,Ið1� �Þð1� �w,IIÞ�, ð15Þ

where pdc is the probability that the gate count comes from

a dark count on the heralding channel, �w,I/II is the

probability to have zero accidental heralded counts in the

first/second part of the total measurement time window w

(we assume that the correlated photons arrive exactly at w/2),

and � is the total detection efficiency of the detection system

including coupling and optical losses and detector detection

efficiency. Thus, the first term of Equation (15) accounts for

the heralded counts in the full window w but coming from

dark heralding counts, and the second group is due to true

heralding counts. Within this group the first term is the

probability that, even if the heralding detector clicks for

a photon of a pair, the heralded detector clicks for an

accidental event in the first half of w; the second term is the

probability that the heralded detector does not fire in the first

half of w but it clicks for the correlated photon; finally the

third term is the probability that the heralded detector does

not fire in the first half of w and does not fire for the

correlated photon, but fires for an accidental event in the

second half of the coincidence window.
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