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The International Committee for Radionuclide Metrology (ICRM) is an association of radionuclide 
metrology laboratories whose membership is composed of delegates of these laboratories together 
with other scientists (associate members) actively engaged in the study and applications of 
radioactivity.  

It explicitly aims at being an international forum for the dissemination of information on techniques, 
applications and data in the field of radionuclide metrology. This discipline provides a range of tools 
for tackling a wide variety of problems in numerous other fields, for both basic research and 
industrial applications. Radionuclide metrology continues to play an important role in the nuclear 
industry, supporting activities such as radionuclide production, nuclear medicine, measurement of 
environmental radioactivity and of radionuclides in food and drinking water, decommissioning of 
nuclear facilities, nuclear security and emergency preparedness, nuclear physics research, etc. 
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PREFACE 

 

Aurelian Luca 1*, Brian Zimmerman 2, Denis Glavič-Cindro 3 

1 Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), DRMR 
Dept., Ionizing Radiation Metrology Laboratory (LMRI), Măgurele, Ilfov county, Romania,  

E-mail address: aluca@nipne.ro 
2 National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 

E-mail address: brian.zimmerman@nist.gov 
3 Jožef Stefan Institute (IJS), Ljubljana, Slovenia, E-mail address: denis.cindro@ijs.si 

 

This third issue of the ICRM Technical Series on Radionuclide Metrology proceedings is devoted to the 
23rd International Conference on Radionuclide Metrology and its Applications (ICRM 2023), organized 
during the period March 26-31, 2023, at the Radisson Blu Hotel, Bucharest, Romania, 
https://icrm2023.nipne.ro. Initially scheduled to be held in 2021, the conference was postponed to 2023 
because of the Covid-19 pandemic. The local organisation was assured by the Horia Hulubei National 
Institute for Research and Development in Physics and Nuclear Engineering (IFIN-HH), 
http://www.nipne.ro. The coordination of the local organisation team was undertaken by the members of the 
Ionizing Radiation Metrology Laboratory (LMRI) from the Department of Radioisotopes and Radiation 
Metrology (DRMR). The conference venue, situated in downtown Bucharest, provided excellent facilities 
for the conference and the participants coming from 30 countries.  

Radionuclide metrology brings together interdisciplinary research and development teams (physicists, 
chemists, biologists, mathematicians, engineers, etc.) with the main purpose of ensuring improved tools for 
the qualitative and quantitative characterization of the radionuclides. This work is important because 
radionuclide metrology has an impact on many applications for sustainable development: life sciences, 
climate change, environmental protection (clean air, water and soil; food safety), nuclear energy, ionizing 
radiation protection, radioactive waste management, and industry (new materials, radioactive standards, 
detectors etc.). 

The International Committee for Radionuclide Metrology (ICRM), 
https://physics.nist.gov/ICRM/index.html, founded in Paris in 1974), is an association of radionuclide 
metrology laboratories represented by appointed delegates together with other scientists (associated 
members). The initiative of founding this international scientific association originates from the 1st 
International Summer School on Radionuclide Metrology, organized in 1972 at Herceg-Novi, 
Yugoslavia. More than 50 years later, an interesting article about this important event was published in 
the virtual special issue ICRM 2023 of Applied Radiation and Isotopes by Dr. Maria Sahagia (IFIN-HH, 
Romania) – one of the participants in this Summer School.  

The ICRM promotes international collaboration in the field of radionuclide metrology. The membership 
of ICRM continues to increase: there were 46 institutional members at the time of ICRM 2023 conference. 
The biennial ICRM conferences, the ICRM Low Level Radionuclide Metrology Techniques (LLRMT) 
conferences (held every four years), the annual ICRM Working Groups meetings, and other actions, like 
training courses for young researchers, are open to all professionals (researchers, professors, engineers, 
technicians, etc.) and students interested in the radionuclide metrology and its applications. The previous 
ICRM conference was the 22nd International Conference on Radionuclide Metrology and its Applications 
(ICRM 2019), hosted by the University of Salamanca (Spain), during May 27-31, 2019, https://icrm.usal.es. 
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The 23rd International Conference on Radionuclide Metrology and its Applications (ICRM 2023) was 
the first ICRM conference organised in a hybrid format, with in-person participants and online participants. 
From the total number of 153 registered participants from 30 countries and 3 international organizations, 
131 persons (about 85 % of the total number of participants) attended in-person the ICRM 2023 conference. 
Among the participants to ICRM 2023 there were experts from the Comprehensive Nuclear-Test-Ban 
Treaty Organization (CTBTO), the  Bureau International des Poids et Mesures (BIPM) and the International 
Atomic Energy Agency (IAEA). During a specific conference session (Research in Industry) on Wednesday 
29 March 2023, interesting presentations about some of the newest products available for the radionuclide 
metrology community were given by Gabriela Ilie (Mirion Technologies Inc., USA) and Matteo Corbo 
(CAEN SPA, Italy). The booths of these two companies, located in the coffee break area, allowed better 
interaction with the conference participants, presenting instruments and printed documents about their 
products and services. The online participants were not allowed to present papers at ICRM 2023, but they 
could follow all the invited and oral presentations broadcasted by ZOOM and ask questions using the chat 
facility. A few of the online participants had short presentations (by ZOOM) within the ICRM Working 
Group meetings. All the online participants received/downloaded the Abstract Book (pdf file) and other 
conference documents, and had online access to some of the posters provided by the authors. 

From the total number of 111 abstracts submitted for the ICRM 2023 conference, 104 abstracts were 
accepted for ICRM 2023. During the conference, 97 papers were presented: 5 invited talks, 37 oral, and 
55 poster presentations. Although 67 papers presented at the conference were accepted for submission to 
Applied Radiation and Isotopes, only about 70 % of these were submitted to the journal. The virtual 
special issue VSI:ICRM 2023 of Applied Radiation and Isotopes (see the Appendix) includes 40 articles, 
accepted after a rigorous reviewing process. Other papers presented at ICRM 2023 were published in 
Applied Radiation and Isotopes and Metrologia (not included in the special issue). Initially, there were 23 
ICRM 2023 papers proposed to be published in the 3rd issue of the ICRM Technical Series on 
Radionuclide Metrology proceedings, but, in the end, nine papers were accepted for publication in the 
current issue after a peer-review process similar to the one for the papers published in Applied Radiation 
and Isotopes.  This Preface includes the information presented in the Editorial of VSI:ICRM 2023, 
published by the same authors in Applied Radiation and Isotopes, volume 211, 2024, 
https://doi.org/10.1016/j.apradiso.2024.111385. The 3rd issue of the ICRM Technical Series on 
Radionuclide Metrology proceedings (2024) is posted on the ICRM website, 
https://www.physics.nist.gov/ICRM/ICRM_technicalseries_3.pdf (free download). 

During the conference opening on Monday 27 March 2023, participants were welcomed by  Dr. Nicolae 
Marius Mărginean, Director General of IFIN-HH, Dr. Aurelian Luca, Scientific Secretary of the Conference 
ICRM 2023 and by the ICRM President – Dr. Brian Zimmerman (Fig. 1). The scientific programme of the 
conference opened with an interesting invited talk by Dr. Maria Sahagia (IFIN-HH): „Herceg-Novi Summer 
School, the starting point in the history of the International Committee for Radionuclide Metrology”. The 
scientific programme continued with the first session of the conference – Aspects of International 
Metrology, and all the other sessions scheduled during five days, according to the conference agenda. The 
participants in the conference hall and the poster and coffee break area are presented in Fig. 2 and Fig. 3, 
respectively. 
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Most of the ICRM scientific activities are performed within its working groups (WG). Each working 
group is guided by a coordinator who acts as a centre for ideas and communications and has the possibility 
to organise conferences and workshops. There are now eight working groups with the following fields of 
interest and assigned coordinators: 

(1)  Radionuclide Metrology Techniques: Ryan Fitzgerald1, Christophe Bobin7, Steven Bell8, Ole Nähle9 

(2) Alpha-Particle Spectrometry: Stefaan Pommé10 

(3) Gamma-Ray Spectrometry: Marie-Christine Lépy7 

(4)  Life Sciences: Jeffrey T. Cessna1 

(5)  Liquid Scintillation Counting: Karsten Kossert9 

(6)  Low-Level Measurement Techniques: Begoña Quintana Arnés11 until December 2023,  
 then Daniel Zapata9  

(7)  Beta-Particle Spectrometry: Xavier Mougeot7 

(8)  Nuclear Decay Data: Mark Kellett7. 

We express our thanks to Prof. Dr. Begoña Quintana Arnés (University of Salamanca, Spain), who 
coordinated the Low-Level Measurement Techniques WG during the period 2019-2023, with important 
contributions, including her involvement in the excellent organization of the ICRM Low-Level 
Radioactivity Measurement Techniques international conference (ICRM LLRMT 2022), which was held 
during May 2-6, 2022, in Assergi, Italy, https://icrm2022.lngs.infn.it.    

The 11 scientific sessions of the ICRM 2023 conference were established according to the ICRM WGs 
mentioned above: Aspects of International Metrology, Quality Assurance and Proficiency Tests, 
Radionuclide Metrology in Life Sciences, Alpha- and Beta-Particle Spectrometry, Radionuclide Metrology 
Techniques, Gamma-Ray Spectrometry, Measurement Standards and Reference Materials, Source 
Preparation Techniques, Liquid Scintillation Counting Techniques, Nuclear Decay Data and Low Level 
Radioactivity Measurement Techniques.       

Anyone wishing to participate to the different scientific activities of the ICRM or to receive more 
information about the ICRM can contact one or several of the ICRM officers mentioned above. Information 
about the ICRM and its Working Groups is available on the ICRM website:  http://physics.nist.gov/icrm 

The next ICRM conference (ICRM 2025) will be held in Paris, France, during the period May 19-23, 
2025 and will be organized by the Laboratoire National Henri Becquerel (CEA/LNE-LNHB, Saclay, 
France). More information is available on the conference website https://icrm2025.org/. The people 
interested by this conference can also write to Dr. Mark A. Kellett – Scientific Secretary of ICRM 2025 and 
Chair of the Local Organizing Committee ICRM 2025 at the e-mail address mark.kellett@cea.fr. The 
Conference Secretariat can be contacted by e-mail at ICRM2025@cea.fr. For the 24th edition of the ICRM 
conference (ICRM 2025), we address our best wishes to the organizers and participants, with excellent 
scientific achievements, nice moments in the City of Lights and hope for the future of the ICRM. We are 
looking forward to meet you in Paris next year!  

   

                                                            
7   CEA, LIST, Laboratoire National Henri Becquerel (LNE‐LNHB), F‐91191 Gif‐sur‐Yvette Cedex, France.  
8  National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK. 
9  Physikalisch‐Technische Bundesanstalt, Budesallee 100, D‐38116 Braunschweig, Germany.   
10  European Commission, Joint Research Centre, Retieseweg 111, B‐2440 Geel, Belgium.    
11  Laboratorio de Radiaciones Ionizantes‐Datación, Universidad de Salamanca, Salamanca, Spain 
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Abstract 

This study reviewed the results of proficiency tests (PTs) conducted between 2013 and 2021 by the National Radiation 
Standard Laboratory of Taiwan for Taiwanese laboratories that perform low- and intermediate-activity radio-assays. The 
evaluated factors included the concentrations of gamma-emitting radionuclides, H-3, gross beta, and Sr-90 radioactivity, as 
well as the Sr-89/Sr-90 and Fe-55/Fe-59 radioactivity ratios. The results indicated that most of the assessed laboratories 
passed the PTs. 
 
Keywords: Taiwan Accreditation Foundation; proficiency test; difficult-to-measure radionuclide; gamma radionuclide 
analysis; H-3 analysis; gross beta analysis; Sr-90 analysis; Sr-89/Sr-90 analysis 

* Corresponding author, e-mail address: romanayaya@nari.org.tw 

 

1. Introduction 
Examining the performance of laboratories that perform low- 

and intermediateactivity radio-assays is crucial. Currently, seven 
laboratories in Taiwan have received accreditation from the Taiwan 
Accreditation Foundation (TAF) to perform radioactivity assays. 
The TAF provides accreditation on the basis of evaluations 
conducted by the National Radiation Standard Laboratory (NRSL) 
of the National Atomic Research Institute in Taiwan. An evaluation 
based on proficiency tests (PTs) is part of the accreditation 
procedure, which is performed for each laboratory tri-annually. In 
PTs, technical capability and quality control are assessed according 
to the criteria of the Ionizing Radiation Protection Act established 
by the Atomic Energy Council, Executive Yuan, Taiwan. Between 
2013 and 2021, the NRSL conducted four proficiency testing 
programs for low- and intermediate-activity radio-assays according 
to the relevant technical criteria for radionuclides in the TAF-
CNLA-T10(3) guidelines (TAF, 2018). The assessments in these 
programs adhered to the ANSI/HPS N42.22 (ANSI/HPS, 2002) and 
the ISO/IEC 17025 (ISO/IEC, 2017) standards. 

The testing results obtained by the NRSL were used to 
determine the suitability of the analysis methods that are currently 
used in accredited radio-assay laboratories in Taiwan. These results 
and relevant feedback provided by the NRSL can be used by the 
assessed laboratories to improve their testing methods. Laboratories 
that pass the PTs are encouraged to apply for the ISO/IEC 17025 
accreditation or for reaccreditation by the TAF. 
 
2. Materials 

The NRSL conducted PTs by sending suitable samples to the 
seven laboratories accredited by the TAF. 

 
2.1 TAF-CNLA-T10(3) guidelines 
 2.1.1 Radionuclides analysis 
 The following analyses were conducted in the aforementioned 
seven laboratories: 

(1) Analysis of gamma-ray emitters 
(2) H-3 analysis 
(3) Gross beta analysis 
(4) Sr-90 analysis 
(5) Sr-89/Sr-90 mixture analysis 
(6) Fe-55/Fe-59 mixture analysis 
 

 2.1.2 Testing 
Each laboratory performed two to five measurements for each 

sample according to its standard operation procedures. The 
minimum detectable activity (MDA) for each radionuclide needed 
to be lower than the predefined acceptable MDA (AMDA). The 
measurement results were evaluated on the basis of the resolution 
and zeta score (-score). Moreover, the laboratories were requested 
to report the standard measurement uncertainty (see Section 2.1.3). 
 
 2.1.3 Standard measurement uncertainty 

The standard measurement uncertainty for each analysis needed 
to be lower than 10%, and the uncertainty was evaluated according 
to the Joint Committee for Guides in Metrology (JCGM) 100:2008 
standard of evaluation of measurement data—Guide to the 
expression of uncertainty in measurement. 
 
 2.1.4 Resolution 

The resolution (R) is defined as follows: 

 𝑅 ൌ
஺ೞ
௨ೞ

 (1) 

where As is the reference activity concentration of a specific 
radionuclide and where us is the standard measurement uncertainty 
(k = 1) for the reference activity derived by the NRSL. 

The ratio of the activity value obtained by a laboratory (At) to 
the corresponding As value is called the measurement ratio (At/As). 
Table 1 presents the acceptable ranges of the measurement ratio for 
multiple resolutions. 
 

Table 1: Acceptable ranges of the measurement ratio for multiple 
resolutions. 

Resolution 
(R) 

Range of acceptable 
measurement ratio 

<4 0.4-2.5 
4-7 0.5-2.0 
8-15 0.6-1.66 

16-50 0.75-1.33 
51-200 0.8-1.25 
>200 0.85-1.18 
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Abstract  

Since the Fukushima nuclear accident, food-safety has attracted increasing attention in Taiwan. Accurately detecting activity 
is crucial for ensuring food-safety. In this study, the food radiation testing results of eight laboratories accredited by the 
Taiwan Accreditation Foundation were compared according to the MOHWO0015.00 and ISO 17043 standards to examine 
the consistency. A total of 98% of 𝜁 scores were found to be under 2, with the average measured activity being 1.02 ± 0.08 (k 
= 1) times the reference value. 
 
Keywords: activity in food; Taiwan Accreditation Foundation; interlaboratory comparison; ISO 17043 
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1. Introduction 

Food safety has become a major concern in Taiwan since the 
occurrence of the Fukushima nuclear accident in March 2011. 
Detecting radioactive substances in food is essential for ensuring 
food safety. Currently, eight food radiation testing laboratories in 
Taiwan are accredited according to the ISO/IEC 17025:2017 
standard by the Taiwan Accreditation Foundation. These 
laboratories mainly analyze radionuclides such as I-131, Cs-134, 
and Cs-137 with activities ranging from 1 Bq/kg to 100 kBq/kg 
according to the MOHWO0015.00 standard of the food safety law 
(Method of Test of Radionuclides in Foods) established by the 
Ministry of Health and Welfare of Taiwan (2016). 

In the present study, samples that were subjected to food 
radiation testing at the National Radiation Standard Laboratory 
(NRSL) of the National Atomic Research Institute of Taiwan were 
sent to the aforementioned eight laboratories to examine the 
consistency between their testing results.  

The results from each laboratory were assessed, the food 
radiation testing capability of each laboratory was reviewed, and 
whether revisions were required in testing methods was determined. 
Food safety in Taiwan can be ensured if the aforementioned eight 
laboratories provide accurate and consistent results. 

 
2. Materials 

Food samples with different radionuclide massic (or specific) 
activity were prepared and sent to each of the laboratories 
participating in this study. Each laboratory was required to test the 
provided samples in accordance with the method specified in the 
MOHWO0015.00 standard (Table 1). This method is suitable for 
analyzing the massic activities of I-131, Cs-134, and Cs-137 in food 
(solid and liquid). Three matrices are introduced, they are milk (or 
milk products), soft drink (or bottled water), and infant foods, 
respectively. The method is divided into the following stages: 

(1) Screening: An HPGe detector with a multichannel analyzer 
(MCA) is used to detect the target radionuclides, and the 
measurement time is determined by the relative efficiency 
of the HPGe detector. The minimum detectable activity 
(MDA) is less than 5 Bq/kg for soft drinks and less than 10 
Bq/kg for milk and infant foods. 

(2) Quantitative analysis: If the target radionuclides are 
detected, quantitative analysis is performed for the samples. 
Solid samples must be minced before they are subjected to 
quantitative analysis. In this analysis, the weights of solid 
and liquid samples were 100–600 g and 900–1000 g, 

respectively. The MDA was less than 1 Bq/kg for all 
samples. 

Each laboratory had to evaluate the massic activity of I-131, Cs-
134, and Cs-137 and report these activities with their standard 
measurement uncertainties (k = 1). The factors to consider in the 
determination of the measurement uncertainty are presented in 
Table 5. 

 
Table 1: Comparison of the MOHWO0015.00 method (2016) and 

FDA WEAC-RN-Method 3.0 (2022). 

Item MOHWO0015.00 FDA WEAC-RN-
method 3.0 

Detector HPGe HPGe 
Radionuclides 

to be 
determined 

I-131, Cs-134 and Cs–
137 

I-131, Cs-134, Cs-
137, Ru-103 and 
Ru-106 

 
 

Sample mass 

1st stage: (100-600) g for 
each sample matrix; 
 
2nd  stage:  
(1) solid：(100-600) g 
(2) liquid：(900-1,000) g 

൒400 mL 

 
Container 

Marinelli Beaker, other 
appropriate container, or 
wrapped fully sample 

500 mL 

Counting 
time 

based on MDA 600 s  or 6000 s 

 
2.1 Radionuclide determination 

On the basis of the Taiwanese Standards for the Tolerance of 
Atomic Dust and Radioactivity Contamination in Foods, we 
selected I-131, Cs-134, and Cs-137 as target radionuclides for food 
safety testing. The half-life of I-131 is approximately 8 days, and 
iodine exhibits volatility, leading to a possible underestimation of 
the actual activity in the sample material . Therefore, accurately 
determining the activity of I-131 is difficult. Moreover, comparing 
the I-131 activities of samples with stable properties is challenging. 
Consequently, we used Ba-133 as a target nuclide instead of I-131, 
a practice that is followed in many countries. Ba-133 has a main 
gamma-ray energy close to that of I-131; therefore, Ba-133 can be 
used as a simulated radiation source for I-131. Zimmerman et al. 
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Abstract  

During the routine calibration of hospital supplied sources by secondary standard ionisation chamber at the National Physical 
Laboratory (NPL), UK hospitals were asked to send their activity measurement of calibration sources for compilation and 
assessment. From June – December 2022 the data was collected, sorted by radionuclide, and analysed, and several areas of 
improvement were found, including the use of copper dippers and the way dial settings are derived. 
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1. Introduction 

Radionuclide calibrators are used in hospitals to measure the 
activity of radioactive sources used to treat and diagnose patients, 
allowing healthcare professionals to calculate the correct activity to 
be administered. They are therefore very important for patient care, 
as if they give the wrong activity value, then the patient is greatly 
affected. Radionuclide calibrators can give inaccurate activity 
readings for several reasons, including loss of gas (and therefore 
pressure), corrosion of electrodes (which affects their conductivity) 
and changes in vial geometry. To mitigate these, and other, effects 
national and international guidance (such as the NPL Good Practice 
Guide 93 and the IAEA Technical Report 454 (Gadd et al., 2006) 
(IAEA, 2006)) recommends annual calibration of a routinely used 
instrument against a reference instrument to ensure its continual 
traceability to the national standard. At the NPL, the Vinten 671 
(SN: 3-5) secondary standard ionisation chamber fulfils the role of 
the reference chamber, allowing United Kingdom (UK) hospitals to 
use our customer supplied source calibration service to keep their 
calibrators accurate and traceable to primary standards. 
 The calibration service has been running for over thirty years 
and covers manufacturers, National Healthcare Service (NHS) 
hospitals and private hospitals within the UK as well as many 
international hospitals and manufacturers. For this service, the NPL 
receives active sources that were prepared by hospitals and 
measured on each of their calibrators. The calibration process 
(described in section 2) ensures that the calculated activity value is 
geometry independent. The activity value of the original source and 
any impurity data is reported back to the hospital, who then 
compare it to their activity measurement and may adjust the 
calibration factor or dial setting, as necessary.  

The NPL recommends deriving a new dial setting if the hospital 
measurement is ± 5 % away from the NPL value or is inside the ± 5 
% range but is consistently away from the NPL value across 
multiple calibrations. Ideally a statistical analysis is performed 
between the calibrated value and the hospital value to determine if 
the two results are statistically different, however in practice this 
may be tricky due to hospitals being unable to produce accurate 
uncertainty information (Fenwick et al., 2014; Ferreira and 
Fenwick, 2017) 

Once calibrations are complete, customers of the service do not 
typically contact the NPL again until their next calibration is due, 
unless their measurement results are significantly (≥ ± 10 %) 
different to the calibrated value, but this happens infrequently. This 
means that the NPL does not have oversight of the overall 
measurement trends within the customer base. To rectify this, as 

part of the regular calibration service from June – December 2022, 
the measurement results from hospital calibrators were collected 
and analysed, and the hospital source was also measured on two in-
house commercial calibrators.  

 
2. Method 
 Once the hospital sources are received, they are measured on 
Vinten 671, and aliquots of this source are dispensed to ampoules of 
known geometries, with traceable calibration factors. The residue of 
the initial source is also measured on Vinten 671, and the true 
activity of the initial source is calculated. During this process, an 
impurity check is also performed, either using gamma spectrometry, 
or liquid scintillation for pure β emitters and corrections applied to 
the ionisation chamber measurements as appropriate. A simple 
breakdown of the uncertainties associated with this process can be 
seen in Table 1 below. 
 

Table 1: A table showing the approximate value of the major 
uncertainty components of the NPL certificate value. Typical 

certificate uncertainties at k = 2 are 1.5 % for 18F, 1.7 % for 99mTc 
and 123I and 1.4 % for 111In. 

Uncertainty component Maximum Value (k=1) 
Capacitance 0.1 % 
Measurement 0.05 % 
Weighing 0.03 %  
Calibration factor Nuclide dependent (see 

below) 
18F 1 % 

99mTc 0.9 % 
123I 0.9 % 

111In 0.75 % 
 

To effectively analyse data collected from hospitals for trends 
and areas of improvement, it was decided that in addition to the 
activity measurement and reference time, the NPL would also 
collect the make and model of radionuclide calibrator and the dial 
setting used. Hospitals were informed of this study during the 
booking process, and that they would need to send the above data to 
the NPL before provisional certificates were released. They were 
also informed that the calibration source would be measured in the 
NPL CRC-12 and Atomlab 500 commercial radionuclide calibrators 
in addition to Vinten 671. These calibrators were chosen as they 
were thought to be representative of the brands of calibrators that 
hospitals use routinely. The measurements were made on the 
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Abstract 

The National Research Council (NRC) of Canada is developing a new primary method for radioactive noble gas counting 
using a length-compensated proportional counter system. As an initial trial, the activity concentration of a sample of Xe-133 
was determined in the plateau region 1980(20) V for three pairs of proportional counters operating at a pressure of 
1.724(3) × 102 kPa. The mean absolute value of the activity concentration was found to be in line with expectations based on 
Xe-133 supplier-provided information. 
 
Keywords: length-compensated proportional counter; gas counting; Xe-133; activity concentration; primary activity standard 
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1. Introduction 
Radioactive noble gases and tritium are emitted from nuclear 

reactors when electricity is produced, accidents occur and as the 
result of nuclear weapons testing or use, and hence are of great 
interest to the nuclear forensics communities (Schulze et al., 2000). 
In addition, some radioactive noble gases serve critical medical 
functions, as is the case of Xe-133 in the diagnostic imaging for 
certain lung cancers (Mattsson et al., 2015). The accepted method 
by which radioactive noble gases have been standardized in terms 
of primary activity concentration is through the use of length-
compensated proportional counters (LCPC) (Unterweger, 2007). 

Internal gas counting involves the introduction of a beta-
emitting radioactive gas sample within an LCPC system composed 
of two or more nominally identical cylindrical chambers of varying 
lengths. The so called length-compensation refers to the 
cancellation of complex end effects occurring due to the presence of 
non-uniform electric fields in the counter cap regions. The method 
requires that the volume, V, differences between any pair of 
counters (e.g., “short” and “long”) be accurately known, as the 
activity concentration, AV, is based on the net count rate, R, per net 
volume:  

𝐴௏ ൌ
𝑅௟௢௡௚ െ 𝑅௦௛௢௥௧
𝑉௟௢௡௚ െ 𝑉௦௛௢௥௧

 

At present, several national metrology institutes (NMI) operate 
internal gas counting systems as primary radioactivity standards, 
including KRISS (Korea Research Institute of Standards and 
Science) (Seon et al., 2020), NMIJ AIST (National Metrology 
Institute of Japan) (Yunoki et al., 2010), LNE-LNHB 
(Commissariat à l'énergie atomique/Laboratoire National Henri 
Becquerel, France) (Unterweger, 2015), and NPL (National 
Physical Laboratory, UK) (Philips et al., 2010). The National 
Research Council (NRC), which serves as Canada’s NMI, is 
developing a new primary method for radioactive noble gas 
counting using an LCPC. The aim of this work is to provide an 
overview of the NRC LCPC design as well as system performance 
through initial trials performed with samples of Xe-133. 

 
2. System description 

Internal gas counting at NRC consists of two separately 
operated systems, as shown in Figure 1; one for the gas handling, 
the other for data acquisition (DAQ).  

At the heart of the gas handling system are three stainless steel 
cylinders, vertically mounted and serially connected, each with an 
inner diameter of 25 mm and respective lengths of (155.0(5), 
256.5(5) and 384.0(5)) mm. The cylinders are capped at both ends 
with blank CF flanges machined to accommodate two ¼” (6.35 
mm) feedthroughs for gas flow. A stainless steel wire with a 

diameter of 25.4 µm is strung along the central axis of each cylinder 
forming the anodes of the three proportional counters. Custom 
electrical feedthroughs are fashioned by off the shelf PEEK ferrule 
assemblies (Idex VacuTight™ fittings) that mate to 1.6 mm 
diameter stainless steel pins spot welded at each end of the anode 
wire. An SHV connection is made at the top pin and the opposite 
end is capped with an electrical insulator (glass-filled PEEK) to 
prevent electrical discharge. The volumes of the counters were 
gravimetrically calibrated through national measurement standards 
maintained at the NRC and were determined to be 88.43(55) cm3, 
143.66(54) cm3, and 212.92(55) cm3 (k = 2) (uncertainties in 
parentheses throughout this work are for k = 1 unless otherwise 
stated) (procedure described in Harris & Miller, 2019). Two 
counters are in principle sufficient to determine the activity 
concentration, and the third provides a measure of redundancy to 
permit the detection of potential malfunctions and increase the 
overall confidence in the system.  

The other major components of the gas handling system 
include: (i) the radioactive gas sample, which can be introduced by 
means of a glass ampoule, compressed cylinder or quick connected 
sealed vessel, (ii) P10 (90 % argon + 10 % methane) proportional 
counting gas cylinder, (iii) digital pressure regulators (Clippard 
CPC-HFE-QA), (iv) bespoke circulating fan and mixing chamber to 
permit the counting measurements to be performed in either a 
dynamic gas flow or static state, (v) high-volume ballast tank to 
mitigate emergency evacuation occurrences, (vi) 1000 mL spherical 
quartz reference volume (Technical Glass Products, Inc.), (vii) 
pressure transducers (Setra barometric transmitter 0-50 Psia), (viii) 
vacuum transducers (Agilent FRG-700 Pirani/inverted magnetron), 
(ix) temperature sensors (USP12920 3892K) and, (x) a turbo 
vacuum pump (Edwards T-Station 85) that vents to the outside of 
the building. Despite the relatively small tubing (stainless steel ¼” 
(6.35 mm)) and number of bends, the vacuum pump can evacuate 
the gas handling system to a minimum pressure on the order of 1 
Pa.  

An instrumentation chassis (National Instruments PXIe-1088) is 
used to remotely monitor and precisely control process variables via 
LabVIEW code, including the pressure regulator settings, 
circulation fan operation as well as pressure and temperature 
logging. To verify the long term stability of the gas handling system 
volume, or a portion thereof, a volumetric expansion of the quartz 
reference volume is performed by first filling the system with pure 
nitrogen gas to a known pressure, closing the valve to the known 
reference volume, evacuating the system, and subsequently refilling 
the system with the contents of the reference volume, all while 
monitoring the internal gas temperature (i.e., Boyle-Charles gas 
laws). Accurate control of input pressures permit the quantitative 
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P10 (90 % methane and 10 % argon) as other groups have done in 
the past6.  

(ii) Extrapolation to zero energy - The effect of the counts lost 
below the threshold setting, an often dominant source of uncertainty 
in LCPC, is not accounted for in this study and will be the subject 
of ongoing work in which extrapolations to zero energy are 
compared against Monte Carlo-derived beta spectra (Unterweger 
2015). This approach will require an energy calibration by means of 
a suitable source (e.g., Fe-55). 

(iii) Direct comparison against existing standards – As always, 
the ultimate measure of the accuracy will come from participating 
in a direct comparison against established primary standards which 
typically budget an overall relative standard uncertainty of (1.2 – 
2.5) % (k = 2). Demonstrating agreement among, ideally 
independent, methods is needed not only to build confidence, but to 
validate any estimated uncertainty budgets. 
 
5. Conclusions 

A primary internal gas counting capability for beta-emitting 
noble gases based on LCPC is under development by NRC Canada. 
This initial trialing of the system with a sample of Xe-133 suggests 
that for a pressure of 1.724(3) × 102 kPa, a bias of 1980(20) V will 
place the operation of the system within the stable range of the HV 
plateau. The mean measured absolute activity concentration was 
found to be consistent with expectations based on the Xe-133 
supplier provided information, though questions remain pertaining 
to the unexpected drop in the count rates at higher voltages past the 
plateau region. 

 
Acknowledgements 

Funding for this research was provided by the Canadian Safety 
and Security Program, Project No. CSSP-2019-CP-2452. 
References  
Harris, G.L., & Miller V.R. (2019) SOP 14-1 Gravimetric 

Calibration of Volumetric Ware Using an Electronic Balance, in 
Selected Procedures for Volumetric Calibrations NISTIR 7383, 
(2019 Ed). 

Mattsson, S., Johansson, L., Liniecki, J., Noßke, D., Riklund, K.Å., 
Stabin, M., Taylor, D., Bolch, W., Carlsson, S., Eckerman, K. 
and Giussani, A., 2015. Radiation Dose to Patients from 
Radiopharmaceuticals: a Compendium of Current Information 
Related to Frequently Used Substances. Annals of the ICRP, 
44(2 Suppl), pp.7-321. 

Phillips, H. C., Johansson, L. C., & Sephton, J. P. (2010). 
Standardisation of 85Kr. Applied Radiation and Isotopes, 68(7-
8), 1335-1339. 

Schulze, J., Auer, M., & Werzi, R. (2000). Low level radioactivity 
measurement in support of the CTBTO. Applied Radiation and 
Isotopes, 53(1-2), 23-30. 

Seon, Y., Hwang, S. H., Lee, J. M., Lee, K. B., Heo, D. H., Han, M. 
J., & Kim, H. J. (2020). The primary system for measurement of 
beta emitting radioactive gases at KRISS. Applied Radiation 
and Isotopes, 164, 109238. 

Unterweger, M.P. (2007) Primary radioactive gas standards 
(excluding radon). Metrologia, 44(4), S79. 

Unterweger, M., et al. (2015). Uncertainties in internal gas 
counting. Metrologia, 52(3), S156. 

Yunoki, A., Yamada, T., Kawada, Y., Unno, Y., Sato, Y., & Hino, 
Y. (2010). Activity measurement of 85Kr diluted by a large 
volume balloon technique. Applied Radiation and Isotopes, 
68(7-8), 1340-1343. 

 

  



ICRM Technical Series on Radionuclide Metrology ISSN 2522‐4328 – issue 3  35 
 

 

Application of inductively coupled plasma tandem mass spectrometry  
for re-measuring the half-life of long-lived radionuclides 

Emma C. Brayshera*, Ben Russella, Arzu Arinca, Marc Abilamaa, Robert Shearmana,  
Elsje van Esa, Peter Ivanova, David Readb 

 
a National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK 

b University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK 

 

Abstract 

Mass spectrometry is increasingly used for contributing to half-life determination through atom counting. Tandem 
inductively coupled plasma mass spectrometry (ICP-MS/MS) has demonstrated improved online interference removal for 
multiple radionuclides, but has not been applied to half-life measurements. This paper details the first known investigation of 
ICP-MS/MS for half-life measurement, focusing on 238U. The optimal setup, combined with Defined Solid Angle (DSA) 
measurement, calculated a half-life of 4.444 (55) × 109 a, in agreement with the current value of 4.468 (5) × 109 a. Further 
improvements in the instrument setup are recommended. 
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1. Introduction 
Mass spectrometry is a technique well-suited to the 

measurement of medium and long-lived radionuclides. It is 
increasingly being used in areas including decommissioning, 
environmental monitoring and nuclear forensics as a rapid 
alternative to radiometric measurement techniques. More recently, 
mass spectrometry has been used to contribute to re-measurement 
of the half-life of long-lived radionuclides using atom counting, in 
combination with absolute decay counting measurements. 
Advances in mass spectrometry means the accuracy and precision 
of radioisotopic dates are now sometimes limited by knowledge of 
the decay constants rather than the analytical uncertainty in atom 
counting and isotope ratio measurements (Parsons-Davis et al., 
2018). 

Short to medium half-lives can be determined by measuring the 
activity or the number of atoms and observing how they change 
over time (Pommé, 2015), through the relationship between the 
decay constant (𝜆ሻ and the half-life (𝑡ଵ

ଶൗ
ሻ: 

   𝑡ଵ
ଶൗ
ൌ

୪୬ ሺଶሻ

ఒ
    (1) 

The half-life can also be measured using the mass 
concentration of the isotope of interest (mx), the activity of the 
sample per mass unit (A) and the atomic mass of the isotope (M) as 
well as Avogadro’s number (NA) to give the number of atoms (N): 

𝑡ଵ
ଶൗ
ൌ lnሺ2ሻ

ே

஺
ൌ lnሺ2ሻ

௡∙ேಲ
஺

ൌ lnሺ2ሻ
ேಲ൉௠ೣ

஺∙ெ
           (2) 

 
Previous half-life studies have used thermal ionisation mass 

spectrometry (TIMS) (Bé et al., 2015; Cheng et al., 2000; He et al., 
2009), accelerator mass spectrometry (AMS) (Dou et al., 2014; 
MacDonald et al., 2016a), high-resolution ICP-MS (Kossert et al., 
2013) and multi-collector inductively coupled plasma mass 
spectrometry (MC-ICP-MS) (Cassette et al., 2010; Cheng et al., 
2013; Essex et al., 2018; Jerome et al., 2019; Nedjadi et al., 2012; 
Parsons-Davis et al., 2018; Varga et al., 2016; Yang et al., 2010) 
(Table 1). While TIMS and AMS were more traditionally used in 
half-life studies for their high sensitivity, ICP-MS application has 

 

 
 
 

been increasing in recent years, with at least 15 half-life studies 
mentioning ICP-MS in the past two decades (figure 1). 

 

 
Fig. 1:  Cumulative number of half-life studies over time using 

mass spectrometry. 

Over the last decade, commercially available Inductively 
Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) has 
been increasingly used for medium and long-lived radionuclide 
measurement, with the online interference removal capability 
reducing or removing the need for relatively time-consuming 
offline chemical separation (Croudace et al., 2017; P E Warwick et 
al., 2019). However, ICP-MS/MS has never been applied to half-
life determination. 

Uranium-238 was identified as a good candidate to test ICP-
MS/MS for half-life measurements due to its long half-life of 
4.468 (5) × 109 a (Bé et al., 2006) and subsequently its low specific 
activity, resulting in good sensitivity for mass spectrometry 
measurement. Uranium-238 does not suffer from significant 
spectral interferences, therefore is unlikely to utilise the 
interference removal capabilities of ICP-MS/MS. A radionuclide 
such as 238U, that does not need these capabilities provides an 
opportunity to optimise the setup and compare the precision 
achievable to alternative instrument designs. 
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Table 1: Examples of recent studies using mass spectrometry for measuring long half-lives (uncertainty k=1 unless stated otherwise). 

Radionuclide Starting sample Sample 
preparation 

Activity 
measurement 

Mass 
spectrometry 
technique 

Half-life  Reference 

238U ‘‘Q-metal’’ uranium, 
containing (99.96 % 
238U) 

HF digestion Gamma 
spectrometry 

MC-ICP-MS 4.456 (21) 109 a Parsons-Davis 
et al. (2018)  

79Se Purified selenium 
(enriched in 78Se to 
57 %)  
 

Stepwise dilution 
with high-pure 
selenium dioxide 

Liquid 
scintillation 
counting 

AMS 2.78 (18) × 105 a Dou et al. 
(2014)  

93Zr High level liquid 
waste 

Silica gel 
adsorption and 
TBP extraction 

Liquid 
scintillation 
counting 

MC-ICP-MS 
 

1.13 (11) × 106 a Yang et al. 
(2010)   
 
 

135Cs Stainless steel pipe 
used for collecting 
radio-Xe gas, decayed 
for several hours 

HF digestion Liquid 
scintillation 
counting 

AMS / ICP-
MS 

1.6 (6) × 106 a  / 
1.3 (2) × 106 a 

MacDonald et 
al. (2016)  

151Sm Sm2O3, enriched in 
150Sm to 87.27 % 
 

Dissolution in 
HNO3 

Liquid 
scintillation 
counting 

TIMS 96.6 (24) a He et al. (2009) 

 Samarium oxide, 
enriched in 149Sm to 
95.1 % 

HPLC Liquid 
scintillation 
counting 

TIMS 94.6 (6) a Bé et al. (2015)   

230Th Zircons, spar, latite 
and uraninite 

Dissolution in 
HNO3 

None TIMS 75690 (230) a  
(k = 2) 

Cheng et al. 
(2000) 

234U Zircons, spar, latite 
and uraninite 

Dissolution in 
HNO3 

None TIMS 245250 (490) a  
(k = 2) 

Cheng et al. 
(2000)   

       
Uranium-238 is a key isotope in geological dating techniques, 

with the decay of 238U and 235U to 206Pb and 207Pb forming the basis 
for one of the oldest methods of geochronology (Begemann et al., 
2001). Despite this, the current recommended half-life is based on a 
single published value in 1971 (Chisté and Bé, 2005; Jaffey et al., 
1971; Schön et al., 2004). The low uncertainty of 0.12 % (k = 2) 
associated with this measurement has been unmatched in other 
studies (Schön et al., 2004; Villa et al., 2022). It is thought that this 
is due to the fact that systematic uncertainties, while considered, 
were not included in the uncertainty quoted (Schön et al., 2004; 
Villa et al., 2022). As a result, an uncertainty of double the 
magnitude has been applied to the recommended value as a 
conservative estimate to account for the systematic uncertainties 
(Chisté and Bé, 2005). Additionally, a call has been made for new 
measurements of the half-life with accuracies comparable to the 
work of Jaffey et al. (Schön et al., 2004). Previous measurements of 
the 238U half-life, and the current recommended value, are shown in 
figure 2. A call for an improved set of decay constants for 
geochronological use was published in 2001 (Begemann et al., 
2001), stating that the accuracy of radioisotopic ages is limited by 
the accuracy of radioactive decay constants. Radioisotopic dating is 
directly dependent on accurate measurement of decay constants and 
therefore a thorough understanding of associated uncertainty is 
necessary (Ludwig, 2003; Parsons-Davis et al., 2018; Schoene et 
al., 2006; Schön et al., 2004; Villa et al., 2016). 

 
Fig. 2:  Previously measured half-life values and associated 

uncertainties, with the black lines being the current recommended 
value and its associated uncertainties (Chisté and Bé, 2005; Schön 

et al., 2004). 

The most recent published measurement of the 238U half-life 
was from Parsons-Davis in 2018 (Parsons-Davis et al., 2018). In 
this study, the ingrowth method was used, in which ingrowth of the 
progeny radionuclide is measured as a ratio to the parent over 
several years, which is discussed in more detail in the Parsons-
Davis study and elsewhere (Braysher et al., 2020; Varga et al., 
2016). This is relevant for a long-lived radionuclide such as 238U 
with a relatively short-lived progeny such as 234Th as the activity of 
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the parent can be assumed as constant over the measurement time. 
In this study 238U was quantified by MC-ICP-MS, ingrown thorium 
was extracted, purified and also measured. The thorium aliquots 
were then allowed to decay to 234U for ≥ 10 half-lives of 234Th and 
the number of 234U atoms were counted, representative of the 
number of 238U atoms decayed. The 238U half-life was determined at 
4.456 (21) × 109 a and the 234Th half-life at 24.157 (74) d, but there 
was internal inconsistency in measurements that increased the 
relative uncertainty on the 238U half-life value to 0.462 % (k = 2). 

Isotope dilution mass spectrometry is the most commonly used 
method when using mass spectrometry for half-life applications. 
Isotope dilution relies on a spike of known isotope ratio of the 
element of interest, preferably significantly different to that of the 
sample, being added to the sample of measured isotope ratio. The 
ratio of the isotopes in the mixed sample and spike will then be 
measured with no reliance on signal intensity (Braysher et al., 
2020). A sample with a certified isotopic ratio should also be 
measured, most commonly using the sample:standard bracketing 
technique, to calculate and correct for instrument bias when 
measuring isotopic ratios. 

This study investigates the advantages and limitations of ICP-
MS/MS for half-life measurement for the first time. The instrument 
setup was optimised for uranium isotope measurements using 
isotope dilution mass spectrometry, with the performance assessed 
compared to results achieved in other studies using MC-ICP-MS. A 
further aim was to develop a consistent method for atom counting 
by ICP-MS/MS that can be applied to other radioisotopes with good 
understanding of uncertainty budget. 

 
2. Materials & methods 

Uncertainties are quoted as k=1 throughout unless stated 
otherwise. 

 
2.1 Instrumentation 

Two ICP-MS/MS instruments (Agilent 8800 and a newer 
generation Agilent 8900) were used. Each of these instruments is 
equipped with two quadrupole mass filters, separated by a collision-
reaction cell. A detailed instrument setup and optimisation is 
discussed elsewhere (Braysher et al., 2020). Although online 
interference removal was not required for 238U measurements, the 
instrument performance using both one (Single Quad) and both 
quadrupole mass filters (MS/MS) was evaluated. The reaction cell 
gas was not investigated, although this would be beneficial for other 
radionuclides where offline chemical separation cannot reliably 
remove interferences (P E Warwick et al., 2019). In addition to the 
standard sample introduction system (Scott double pass spray 
chamber, Microconcentric nebuliser, SP4 autosampler and 
peristaltic pump), an Apex Q desolvating sample introduction 
system (Elemental Scientific) was also tested. This system 
introduces the sample as a dry aerosol, resulting in reduced hydride 
and oxide-based interferences, as well as a 3-10-fold sensitivity 
improvement (Elemental Scientific, n.d.) compared to the standard 
sample introduction system. 
 
2.2 Sample preparation 

A solution of 238U in HNO3 in equilibrium with 234Th and 
234mPa was used (Braysher et al., 2021). The uranium was separated 
from actinides and progeny using the PUREX (Plutonium Uranium 
Reduction Extraction) process (Sawant et al., 1998). The separated 
uranium-containing solutions were combined and evaporated to 
incipient dryness, then redissolved in 4 mL of 2 M HNO3. 
 
2.3 Defined solid angle counting for primary standardisation 
To remove residue and contamination prior to measurement, alpha 
discs were washed with acetone, acetic acid (0.01 M) and ethanol 
sequentially. Prior to sample deposition, the thickness of the disc 

was measured in five locations across the surface using a calibrated 
micrometre. Three discs were prepared by depositing, one, two and 
three drops of uranium-containing solution to each disc 
respectively. Photographs of the discs were taken to show the 
distribution of activity on the disc surface. The photographs were 
used to create Monte Carlo models for estimation of the geometrical 
efficiency of particles which pass through the diaphragm. These 
drop-deposited sources were measured using NPL’s bespoke 
defined solid angle (DSA) counting facility at a controlled 
laboratory temperature of 20.0 (10) ᵒC in order to minimise changes 
to the solid angle (Arinc et al., 2016). A background measurement 
was run both before and after each sample measurement. An 
example spectrum is shown in figure 3. The source peak is 
identified and then the total counts, combined with the live time 
measured using a controlled pulser signal, are used to produce a 
background corrected count rate. Using the geometrical efficiency 
obtained from running Monte Carlo simulations, this count rate is 
then efficiency corrected and decay corrected to a chosen reference 
date. Having previously measured the mass of the deposits 
precisely, the activity per mass is then determined.  

 
2.4 Isotope dilution 

Two sequential controlled dilutions of the 238U source were 
performed using a 6-figure balance (Mettler Toledo XP20) in order 
to minimise loss of alpha energy due to thickness of source. The 
gravimetric dilution factor was calculated from mass measurements 
and this was checked against the radiometric dilution factor 
measured by liquid scintillation counting (LSC). For the LSC 
measurements, two aliquots of the solution to be diluted were taken 
before and after dilution for each dilution stage. The aliquots were 
0.1 g for the high level and 2.0 g for the lower level so that activity 
in all the vials were matched. These aliquots were dispensed into 
glass LSC vials containing 15 mL Ultima Gold AB scintillant with 
varying amounts of 2 M HNO3 carrier to match cocktail to 
scintillant ratios. The vials were mixed gently to achieve 
homogeneity. The samples were measured with a Packard TriCarb 
2910TR liquid scintillation counter for two measurement cycles 
with a count time of 360 minutes. Vials containing 2.0 g HNO3, 
were measured before and after the active vials for background 
correction. 

Due to its long half-life of 245.5 (6) × 103 a and lack of spectral 
interferences 234U was selected as a spike for isotope dilution. 
Solutions of 238U spiked with 234U were made up to 10 mL from the 
standardised and diluted 238U sample spiked with a 234U NPL 
standard (102.49 (59) Bq g−1). These isotope dilution standards 
were prepared using a dedicated source preparation facility using a 
six-figure balance (Mettler Toledo XP20). This produced a range of 
samples containing 234U/238U mass ratios between 0 and 10.  

2.5 Mass bias correction 
A Certified Reference Material (CRM U970) (New Brunswick 

Laboratory, U.S. Department of Energy) of U3O8 powder with 
1.7 % 234U, 97.7 % 235U, 0.1 % 236U and 0.5 % 238U (w/w) was used 
to assess and correct for mass bias. The uranium powder was 
dissolved in concentrated HNO3 (trace analysis grade, Fisher 
Scientific) and diluted in 2 % (v/v) HNO3. All masses were 
recorded using a 6-figure balance (Mettler Toledo XP20). 

The linear mass bias law was used to correct for mass bias using 
sample bracketing, as exponential and power models are virtually 
linear at high mass minimal difference is seen between models as 
outlined previously (Braysher et al., 2020; Taylor et al., 1995). 
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improved the sensitivity by an order of magnitude compared to the 
standard sample introduction system, as well as reducing the 
measurement uncertainty to 1.28 %, with a calculated 238U 
concentration of 5.286 (67) μg g−1. 

 
3.2.4 Instrument version 

The Agilent 8800 settings were replicated on the newer 
generation Agilent 8900. Using the standard sample introduction 
system, a 238U concentration of 5.243 (50) μg g−1 was calculated 
with an improved uncertainty of 0.96 %. The sensitivity of the 8900 
was over six times higher than the Agilent 8800 when using the 

same sample introduction system. Because of limited sample 
availability and the need to share equipment between laboratories, 
there was only an opportunity to do a single run using the Apex Q 
with the Agilent 8900. A sensitivity of 95,000 CPS per μg of 238U 
was achieved, compared to the next highest value of 49,000 CPS 
per μg using the older Agilent 8800 with the Apex Q. However, the 
uncertainty increased slightly to 0.97 %, with a slightly less stable 
signal across the samples tested. Future work should include 
additional testing of this setup as is it likely that further uncertainty 
reductions and improvements in signal stability achieved with the 
Agilent 8800 could be made. 

 
Table 4: Measured 238U mass concentration using different instrument modes. 

Instrument/mode/sample introduction system  238U concentration (μg g−1)  Relative uncertainty (%)  Average CPS per μg of 238U 

8800 / MS/MS / Standard 5.30 (19) 3.6  738 

8800 / SQ / Standard  5.19 (12) 2.3  4816 

8800 / SQ / Apex 5.286 (67) 1.3  48813 

8900 / SQ / Standard 5.243 (50) 0.96 32512 

 
Table 5: Summary of optimal instrument setup Instrument. *Microconcentric nebuliser, Peltier-cooled double pass spray chamber. 

Instrument Sweeps Replicates Stabilisation time (s) Mode Sample introduction system 
8900 300 10 20 SQ Standard* 
      

3.2.5 Summary of optimal instrument setup 
Uranium-238 concentrations measured in each instrument mode 

are shown in Table 4, and a summary of the optimum instrument 
setup is shown in Table 5. The newer generation ICP-MS/MS 
operating in Single Quad mode with the standard sample 
introduction system was considered the optimal setup. It is expected 
that this could be improved with further testing using the Apex Q 
sample introduction system with the same instrument.  

For all instrument setups, the isotope ratio measurement of the 
CRM and the 234/238U isotope dilution samples contributes the 
highest uncertainty; following background and isotope standard 
correction, the RSD associated with the isotope ratio measurement 
ranged from 0.71-1.2 % in SQ mode. The 234U mass concentration 
contributes 0.016-0.20 %, while the dilution ratio contributes 
0.0041-0.010 %. The uncertainty budget suggests that the single 
detector setup limits the isotope ratio precision achievable, as the 
detector must ‘hop’ between masses. 
 
4. Uranium-238 half-life 

The activity and mass measurements were combined with the 
atomic mass of 238U (IUPAC, n.d.) and Avogadro’s number (Güttler 
et al., 2019) as in previously shown in Equation 2. Table 6 and 
Figure 5 show calculated half-life values measured with each 
instrument setup. All of the measured half-life values agree with the 
current recommended half-life with uncertainties reflecting that of 
the concentration measurements. The mass measurement dominated 
the combined uncertainty budget at 0.96 % for the optimised setup. 
Uncertainty contributions from atomic mass and Avogadro’s 
number are negligible, while the activity per mass unit contributes 
0.47 %. 

 

Table 6: Calculated half-life values using different mass 
measurement modes with associated uncertainties. 

Mass measurement 
mode  

Half-life (a)  Relative 
uncertainty (%)  

8800 MS/MS  4.52 (17) × 109 3.7 

8800 SQ  4.44 (11) × 109 2.4  

8800 SQ with Apex  4.516 (68) × 109 1.5 

8900 SQ 4.444 (55) × 109 1.2 

 

Fig. 5: Half-life values calculated using different instrument modes 
compared to the current recommended half-life value and 
uncertainty (solid and dashed black lines, respectively). 

Although the precision achieved by ICP-MS/MS for 238U 
(1.2 %) was higher than the uncertainty in a recent using MC-ICP-
MS (0.462 %) (Parsons-Davis et al., 2018) there are a number of 
radionuclides that have benefitted from the tandem setup where 
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offline chemical separation alone cannot completely remove 
interferences e.g. 93Zr, 36Cl, 90Sr and 129I (Croudace et al., 2017; 
Russell et al., 2017; Phillip E Warwick et al., 2019; Yang et al., 
2010). For these radionuclides the ICP-MS/MS technique may be 
beneficial for contributing to updated half-life measurements. 
However, the long-term stability of cell product formation and 
isotope ratio precision must be carefully considered. Further 
investigations should include testing of the Agilent 8900 system 
together with the Apex Q sample introduction. Further testing of the 
optimal stabilisation period with lens settings custom tuned using a 
NatU standard should be quantified. 

 
Conclusions 

This paper details the first application of ICP-MS/MS for half-
life measurement. Isotope dilution was used and the instrument 
setup was optimised for measurement of 238U. The measurement 
precision was significantly improved through optimisation of the 
instrument setup, including number of sweeps and replicates, 
stabilisation time, sample introduction system, as well as the 
instrument mode and instrument type. Half-lives measured with all 
instrument setups agreed with the current recommended half-life. 
The relative uncertainty of the measured half-life was 1.2 %, 
compared to the current recommended value of 0.12 % and 0.462 % 
using MC-ICP-MS in a recent study. A consistent approach has 
been developed for long half-life measurement using ICP-MS/MS, 
including a full uncertainty budget. 
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Abstract 

In gamma-ray spectrometry, analyzing low-energy gamma-emitting nuclides such as 210Pb, 129I, and 234Th requires careful 
consideration due to the sample's self-attenuation, which is influenced by the specific elemental composition of the sample 
material. In this study, we present a novel non-collimated transmission measurement method utilizing a range of gamma- and 
X-rays, spanning 13.6 - 302 keV to acquire attenuation data. Subsequently, we apply sample self-attenuation corrections using 
efficiency transfer through EFFTRAN, incorporating the attenuation data derived from the transmission measurements. 

 
Keywords: mass attenuation coefficient, HPGe detector, transmission, low energy, composition 

* Corresponding author, e-mail address: leen.verheyen@sckcen.be 

 
1. Introduction  

 
Gamma-ray spectrometry is a technique that is widely used to 

quantify radionuclides in various applications. In order to quantify 
radionuclides using a gamma-ray spectrometry system, several 
calibrations of the spectrometer are necessary. The energy 
calibration sets up, this is the relation between the channel numbers 
of the gamma-ray spectrum and the corresponding energy of the 
full energy peaks of the gamma-rays that make up the spectrum. 
Peak shape calibrations define the parameters and equations 
necessary for a mathematical description of the peak shape, which 
is necessary for determining peak areas. The counting efficiency 
calibration sets the relation between the net peak areas of a certain 
radionuclide and its radioactivity or radioactivity concentration for 
a sample for which the spectrum was recorded. The counting 
efficiency calibration is dependent on many parameters, such as 
gamma-ray energy, the specific counting geometry in which the 
spectrum is acquired and the gamma-ray attenuation by the sample. 

The counting efficiency calibration is commonly set up by an 
experiment in which a known radioactivity is measured in identical 
or similar conditions as the sample with the unknown radioactivity 
to be measured. Any difference between the calibration conditions 
and the conditions of the actual measurement of a sample may 
introduce a measurement bias. In general, samples and counting 
conditions may be complex in gamma-ray spectrometry, but in the 
application of laboratory analyses on small counting beakers the 
different sample parameters are generally well known.  

Counting efficiency calibration is a crucial step in gamma-ray 
analysis, and both experimental and computer simulation 
approaches are widely used. While computer simulations can 
accurately calculate the counting efficiency by modeling gamma-
ray interactions in the sample and detector, obtaining unbiased 
results requires precise information for all relevant parameters 
defining the sample and the detector. To obtain this information 
generally also experiments with well-known gamma sources are 
needed for benchmarking and fine-tuning the simulation model. 

Efficiency transfer is commonly used to correct for known 
deviations in the counting geometry of the actual sample compared 
to the reference calibration. Correction factors (transfer factors) are 
obtained through analytical or computer simulation techniques. 

Efficiency transfer is commonly used in laboratory analyses of 
small samples for which pre-defined efficiency calibrations were 
set up. Correction factors are typically needed to correct for 
differences in e.g. the sample filling height, sample composition 
and mass density of the sample material. These are all parameters 
related to the sample self-attenuation of the gamma rays. 

At low energy (e.g. below 100 keV) the attenuation of gamma-
rays in matter is a function of the chemical composition of the 
sample material. With no appropriate correction for sample self-
attenuation, that can be different from the attenuation in the 
calibration sample, and with the assay of low-energy gamma 
emitters measurement results will be generally biased. The 
attenuation of low-energy gamma-rays strongly depends on the 
composition of the attenuating material, making it challenging to 
analyze radionuclides such as 210Pb, 241Am, 234Th  and 129I. To deal 
with sample self-attenuation commonly, separate measurements of 
the attenuation properties of the material are conducted, or its 
chemical composition is identified (e.g. by energy dispersive X-ray 
analysis) from which the attenuation coefficients are then obtained 
from the XCOM database (Berger, 2010). 

An effective solution to address the problem of unknown 
gamma attenuation at low energy in gamma-ray spectrometry was 
proposed by Cutshall in 1983 (Cutshall, 1983). The method 
involves computing an energy-specific correction factor obtained 
from the transmission through the sample at the same energy. This 
straightforward approach enables a more accurate analysis 
involving low-energy gamma-rays. Cutshall's correction factor 
computation method assumes that gamma-rays travel in parallel 
trajectories through the sample, as would be the case when the 
radiation source and detector are infinitely far apart. However, in 
practice the distance between the sample and detector is short (e.g. 
in applications for analysis of environmental radioactivity). 
Consequently gamma-rays travel in fan beams and the 
interpretation model is strictly not valid. Though since both, 
transmission and correction factor are used in a relative way in 
certain conditions still acceptable correction for sample self-
attenuation are obtained depending on the counting geometry 
(Jodlowski, 2016) (Iurian, 2018). 

Several attempts have been made to improve the Cutshall 
method by computing geometry-specific corrections to the basic 
correction of the method (Jodlowski, 2016). These corrections aim 



ICR

 

to 
pro
on 
thro

req
the 
coe
inv
ach
col
from
pea
des
app

traj
rea
(Sim
for 
rati
sam

col
rep
rela
obt
to w
its 
effi
det
con

tran
obt
use

coe
alre
also
atte
pho
Mo
and
wer
ene
dat

RM Technica

account for th
oximity to the d

the specifics o
ough experimen
Gamma-ray sp

quires the use of
sample mat

efficients using
volves collimato
hieve acceptabl
limated transm
m low-incidenc
ak analysis. As 
signed and may
proach. 

The determina
jectories of gam
lized by compu
ma O., 2001) on
a predefined s

io of detector 
mple for a transm

We propose 
limation that 
resenting the 
ative to that of
tained from a tr
water. Water is
ease of prepara
iciency calibra
ermine attenua

nfigurations tha
Figure 1 Fig

nsmission spec
taining the trans
ed for assay of t

 

Figure 1: Setu
A sample specif

Similar meth
efficients for t
eady presented 
o by Lee (Le
enuation coeffi
oton transmissi
oreover, the ene
d 59.5 keV resp
re determined. 
ergies as low a
a at low energ

al Series on R

he non-parallel
detector. The a
of the counting
nts with well-kn
pectrometry ana
f mass attenuati
terial. Experim
g a parallel 
ors and a relati
le counting sta

mission source m
ce-angle scatter

a result, these
y require more r

ation of attenua
mma-rays from 
utation. Using th
ne can compute
sample geometr

response relat
mission point s

a method b
involves es

linear attenua
f water as a fu
ransmission ex
s often used as 
ation and comm
ations. This a
ation coefficien
an a points sourc
gureshows the
ctra using a po
smission data is
the radioactivity

up used to meas
ific for the trans

hods for the
the correction 

in the past by
ee J.B., 2020)
icients for sele
ion ratio relati
ergies below 1
pectively and o
We show tha

as 13 keV, and
gy to obtain a 

Radionuclide 

l nature of ga
ccuracy of the 
g geometry an
nown gamma s
alyses of low-e
ion coefficients
mental determ
beam of gam
vely active tran

atistics. Spectra
may show artif
ring in the collim
e experiments n
resources comp

ation coefficien
a transmission

he computer pr
e the linear atte
ry and experim
tive to that of
ource. 
based on tra
stablishing a 
ation coefficien
unction of the 

xperiment for th
a reference sa

mon use in exp
approach can 
nts for other t
ce e.g. using a s
e setup used
oint source. Th
s not necessary 
y content. 

sure the transm
smission analys

e determinatio
of sample se

y Byun (Byun 
). However, a
ected materials
ive to a non-a

100 keV were l
only total atten

at the method c
d suggest using

more dense e

Metrology I

mma-rays in c
correction dep

nd can be valid
ources. 

energy gamma-
s that are specif
mination of t
mma-rays typi
nsmission sourc
a obtained with
fact peaks resu
mator, complica
need to be care
ared to the Cut

nts with non-par
n source can als
ogram GESPEC
nuation coeffic

mental value fo
f a non-attenua

nsmission wit
calibration c

nt of the mat
relative count 

his material rel
ample matrix du
perimental refer

also be used
ransmission so
surface source. 

d to measure 
he sample used
the same as the

 
mission spectra.
sis is considered

on of attenua
lf-attenuation w
J., 2015) and 

all determined
s directly from
attenuating sam
limited to 46.5
nuation coeffic
can be extende

more transmis
energy grid to 

SSN 2522‐43

close 
pends 
dated 

-rays, 
fic to 
these 
ically 
ce to 
h the 
ulting 
ating 

efully 
tshall 

rallel 
so be 
COR 

cients 
or the 
ating 

thout 
curve 
terial 
t rate 
lative 
ue to 
rence 
d to 
ource 
 

the 
d for 
e one 

.  
d. 

ation 
were 
later 

d the 
m the 
mple. 
 keV 

cients 
ed to 
ssion 
well 

repr
ener
use 
dem
atten

2. 
 
2.1 

dete
the 
com
fact
in 
requ

coef

obta
sour
the 
(ma
rela
the 

 

spec
𝑟஺ i
tran
calib
rela
spec
dete
than
calib

perp
a co
cond

of a
mat

equ

para
and 
whi
can 

൬
𝑟஺
𝑟௪

328 – issue 3

resent the var
rgies. A dense 
for efficiency t

monstrate that t
nuation as well
 
Materials and

Materials used
The choice of

ermination of re
fact that the

mmonly set up 
tors are then als
other sample 
uired. The ex

fficients involv

ained by transm
rce through the
count rate obta

aterial W), both
ative linear atten
relative count r

In which ሺμ୅ሺ𝐸
cified energy E
is the count ra

nsmission sourc
bration function

ative count rates
cific, but may
ectors. In the c
n the detector 
bration function

 

Equation (2) is
pendicular throu
onstant detecti
dition, the ratio

 

Where the righ
attenuation of 
terial. This yield

 െ ln ቀ
௥ಲ
௥ೢ
ቁ

From which it 
als 𝐶 ൌ െ ሺ𝜇௪ሺ
In the more ge

allel beam perp
where the det

ch the gamma-
be expressed a
 

஺

௪
൰ ൌ

׬ 𝐼ሺ೘ೌೣ

଴

׬ 𝐼ሺ೘ೌೣ

଴

3 

iation of the 
energy grid fo
transfer withou
the method can
as total attenua

d methods 

d for transmissio
f water as a r
elative linear att

reference co
for a water m

o relative to the
parameters fo

xperimental se

es the measure

mitting gamma-r
e material of in
ained by transm
h measured in a
nuation coeffic
rates using a ma

ఓಲሺாሻఘಲషభఘಲ
ᇲ

ఓೢሺாሻఘೢషభఘೢ
ᇲ

𝐸ሻρ୅ିଵሻ is the 
and 𝜌஺

ᇱ  is the a
ate (in counts 
e through the m
n correlating th
s. The calibratio
y be more g
conditions whe
crystal diamete
n is given by: 

ఓಲሺாሻఘಲషభఘಲ
ᇲ

ఓೢሺாሻఘೢషభఘೢ
ᇲ ≅

s exact for a pa
ugh the testing 
on efficiency 

o of count rates 

௥ಲ
௥ೢ
ൌ  

ୣ୶୮൫ିఓ

ୣ୶୮൫ିఓೈ

ht-hand side of t
the beam with

ds 

ൌ ቀ
ఓಲሺாሻఘಲషభఘ

ఓೢሺாሻఘೢషభఘ

follows that the
ሺ𝐸ሻ𝜌௪ିଵ𝜌௪ᇱ 𝐿ሻି

eneral situation 
endicular to the
tection efficien
-rays enter the 
s: 

ሻ𝜀ሺሻ exp ቀെ𝜇

ሻ𝜀ሺሻ expሺെ𝜇௪

attenuation co
or attenuation d
ut prior need fo
n be used to d
ation minus coh

on 
reference samp
ttenuation coeff
ounting efficien
matrix. Hence 
e water matrix,
or which effic
et-up to dete

ement of the rel

rays of energy 
nterest (material
mitting gamma-
a fixed predefin
cients can then 
athematical rela

ೢ
ൌ 𝐹௖௔௟ ቀ

௥ಲ
௥ೢ
ቁ 

mass attenuati
apparent density

per second) m
material A at the
he relative atten
on function is e
generally appli
ere the sample 
er, a good app

≅ 𝐶 ln ቀ
௥ಲ
௥ೢ
ቁ ൅ 1 

arallel beam of
g materials and 

over its surfac
can be express

ఓಲሺாሻఘಲషభఘಲ
ᇲ ௅൯

ೈሺாሻఘೈషభఘೈ
ᇲ ௅൯

 

the equation  (3
h L the thickn

ఘಲ
ᇲ

ఘೢ
ᇲ െ 1ቁ 𝜇௪ሺ𝐸ሻ𝜌

e constant in eq
ିଵ for a parallel

where the pho
e sample surfac
ncy is a functio

detector, the r

𝜇஺ሺ𝐸ሻ𝜌஺ିଵ𝜌஺
ᇱ 𝑙ሺ

௪ሺ𝐸ሻ𝜌௪ିଵ𝜌௪ᇱ 𝑙ሺ

oefficients at 
data allows a di
r interpolation.
determine the t
herent scattering

ple material in 
ficients is driven
ncy calibration
efficiency tran
next to differen

ciency transfer
ermine attenua

lative count rate

E from an exte
l A), normalize
rays through w
ned geometry. 
be calculated f

ation 

on coefficients 
y of the materia
measured with 
e energy E. Fୡୟ
nuation data to
energy and dete
icable for sim
diameter is la

proximation for

f photons that r
for a detector w
ce. In this spe
ed as: 

3) gives the r
ness of the sam

𝜌௪ିଵ𝜌௪ᇱ 𝐿 

quation  (2) 
l beam of photo
tons travel not 
e but in a fan b

on of the angle
ratio of count r

ሺሻቁ 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

ሺሻሻ𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

43 

low 
irect 
 We 
total 
g. 

the 
n by 
n is 
nsfer 
nces 
r is 

ation 

e 
௥ಲ
௥ೢ

  

ernal 
ed to 
water 

The 
from 

(1) 

at a 
al A. 

the 
ୟ୪is a 
o the 
ector 
milar 
arger 
r the 

(2) 

runs 
with 
ecial 

(3) 

ratio 
mple 

(4) 

ons. 
in a 

beam 
e by 
rates 

𝑑𝜑

𝑑𝜑
 

(5) 



44  ICRM Technical Series on Radionuclide Metrology ISSN 2522‐4328 – issue 3 

 

In which I() is the photon intensity in the direction given by 

the angle , ε() is the detection efficiency for photons entering 

the detector under an angle  and l() is the path length the 
photons travel through the sample material and the integral is over 
the solid angle Ω subtended by the detector crystal. According to 
Fig. 1, the most inclined photon trajectories through the sample 
correspond to an angle of less than 9. Thus, the longest 
trajectories differ from the thickness of the sample by about 1.2%. 
Therefore, equation (4) should describe with a good approximation 
the present measurements. 

In the approximation that I()ε() is independent of the angle 

, equation (5) has a solution of the form 
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(6) 

In which Δ=L(_max )-L is the difference between the 
maximum path length and the minimum path length of the photons 
of the transmission source in the sample. The equation (6) 
generally does not give a solution such that: 

 

ln ൬
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With C a constant. 
 
The experimental determination of the mass attenuation 

coefficients for a set of materials relies on the photon cross section 
data for the elements and compounds in those materials, which can 

be readily obtained from the XCOM database available on the 
NIST website (Berger M.J., 2010). 

When selecting materials for the experimental determination of 
the attenuation properties, it is important to ensure that the 
materials are of known composition and free of impurities. For 
instance, materials like Polyvinyl Chloride (PVC) may contain a 
complex mixture of additives. Hence the base chemical formula 
(C2H3Cl)n is inappropriate for this experiment as the precise 
composition of such plastics is often unknown. 

The Table 1 specifies the different materials we used to set up 
the calibration function Fୡୟ୪. The table specifies the chemical 
formula used in XCOM, the apparent density 𝜌஺

ᇱ  and the mass 
attenuation coefficients 𝜇஺ሺ𝐸ሻ𝜌஺ିଵat the different energies E 
emitted by the transmission sources.  

The transmission through materials specified in Table 1 were 
measured in a sample container made of polystyrene with an inner 
diameter of 6.2 cm and a sample height of 0.98 cm (see Figure 1). 
Massive solid materials were machined to fit in the container with 
a height of 0.98 cm. Fine powders and liquids were poured in the 
sample container at the reference thickness of 0.98 cm. The 
apparent density of the materials has been determined by weighing 
the material and using the computed volume filled by the material. 
For powders the apparent density may depend on the way the 
powder is compacted, several measurements, involving refilling of 
the sample container and weighing were used to determine an 
average density and uncertainty of this value. For the machined 
materials, the dimensions of the machined cylinder and its weight 
were used to compute the density. 

 

 
Table 1: Mass attenuation coefficients for the different energies and materials with coherent scattering. 

   E(keV) 

Material Formula 𝝆  g/cm³ 13.6 20.8 26.3 31.0 33.0 35.1 53.2 59.5 81.0 302.9 

Water H2O  1 2.19 0.7 0.47 0.36 0.3 0.31 0.22 0.21 0.2 0.12 

Sodium carbonate Na2CO3 1.2 3.93 1.2 0.69 0.48 0.4 0.38 0.23 0.21 0.2 0.1 

Di-ammonium hydrogen citrate C6H14N2O7 0.83 1.75 0.6 0.4 0.32 0.3 0.28 0.2 0.19 0.2 0.11 

Sodium Chloride NaCl 1.36 16.8 4.9 2.58 1.61 1.4 1.17 0.45 0.36 0.2 0.10 

Oxalic Acid Dihydrate C2H6O6 1.14 2.06 0.7 0.44 0.34 0.3 0.29 0.21 0.2 0.2 0.11 

PMMA C5O2H8 1.2 1.42 0.5 0.36 0.29 0.3 0.26 0.2 0.19 0.2 0.11 

Aluminium Al 2.74 13.9 0.1 2.17 1.37 1.2 1.01 0.41 0.34 0.2 0.11 

Teflon - PTFE C2F4 2.21 2.76 0.9 0.53 0.38 0.3 0.31 0.2 0.19 0.2 0.10 

PVDF C2H2F2 1.8 2.36 0.8 0.48 0.35 0.3 0.3 0.2 0.19 0.2 0.11 

PE HD 1000 C2H4 0.96 0.93 0.4 0.31 0.26 0.3 0.24 0.2 0.2 0.2 0.12 

Polyxoxy methylene CH2O 1.43 1.73 0.61 0.40 0.31 0.29 0.27 0.20 0.19 0.17 0.11 

Air 
  

2.01 0.68 0.43 0.33 0.30 0.28 0.20 0.19 0.17 0.11 

PP C3H6 0.95 0.93 0.41 0.31 0.26 0.25 0.24 0.20 0.20 0.18 0.12  

Carbon C 1.1 1.03 0.41 0.30 0.25 0.24 0.23 0.18 0.18 0.16 0.10 

PETP C10H8O4 1.39 1.46 0.5 0.36 0.29 0.3 0.26 0.20 0.19 0.20 0.11 
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Table 2: Activities results calculated from the measurements performed on the BEGe detector, decay corrected to the end  
of the JET DTE2 campaign (21/12/2021 21:53), and cascade corrected by Genie2K’s inbuilt analysis routine using ISOCS total efficiencies. 

ITER 
Material 

Total 
Activity 
(Bq g-1) 

Radionuclide Activity (Bq g-1) 

Sc-46 Cr-51 Mn-54 Fe-59 Co-57 Co-58 Co-60 
ITER#1 2.38x105 n/a (195±16)x103 (5.4±0.3)x103 514±22 (9.0±0.5)x103 (26.6±0.9)x103 198±6 
ITER#2 2.32x105 n/a (190±15)x103 (5.3±0.3)x103 436±21 (9.1±0.5)x103 (26.9±0.9)x103 171±5 
ITER#3 2.22x105 n/a (180±15)x103 (5.5±0.3)x103 490±19 (8.8±0.5)x103 (26.3±0.8)x103 217±6 
ITER#4 2.34x105 n/a (193±16)x103 (5.1±0.3)x103 438±24 (8.6±0.5)x103 (26.6±0.9)x103 167±5 
ITER#5 2.41x105 n/a (197±16)x103 (5.5±0.3)x103 484±24 (9.3±0.5)x103 (27.3±0.9)x103 181±5 
ITER#10 2.47x105 328±12 (170±14)x103 (4.5±0.3)x103 512±30 (18±1)x103 (53±2)x103 468±13 
ITER#12 1.02x104 n/a (8.8±0.8)x103 1.2±0.1 n/a 3.1±0.2 26±2 783±22 
ITER#13 8.72x103 n/a (7.2±0.7)x103 <0.516 n/a 0.37±0.04 <5.08 765±22 
ITER#14 2.99x105 n/a n/a 0.29±0.02 n/a 2.1±0.2 1.5±0.2 0.94±0.03 
ITER#16 2.80x105 <2.73 (235±19)x103 (9.7±0.6)x103 427±16 (8.8±0.5)x103 (25.6±0.8)x103 181±5 
ITER#17 2.70x105 <2.78 (226±18)x103 (9.4±0.6)x103 456±17 (8.5±0.5)x103 (25.3±0.8)x103 178±5 
ITER#18 3.40x105 138±8 (181±15)x103 958±58 529±19 (41±2)x103 (114±4)x103 665±19 
ITER#19 1.14x105 n/a (107±9)x103 (4.9±0.3)x103 702±26 14±1 41±3 7.5±0.3 
ITER#20 1.20x105 n/a (109±9)x103 (5.0±0.3)x103 774±30 11.5±0.9 30±3 7.3±0.3 
ITER#21 1.61x104 <4.36 <2.53x103 455±27 <47.0 (4.0±0.2)x103 (10.9±0.4)x103 707±20 
ITER#23 2.38x105 n/a (196±16)x103 (4.2±0.3)x103 496±19 (9.5±0.5)x103 (27.4±0.9)x103 186±5 
ITER#26 2.42x105 343±12 (161±13)x103 (4.6±0.3)x103 509±19 (19±1)x103 (56±2)x103 312±9 

 
Table 2 continued: Activities results calculated from the measurements performed on the BEGe detector, decay corrected to the end  

of the JET DTE2 campaign (21/12/2021 21:53), and cascade corrected by Genie2K’s inbuilt analysis routine using ISOCS total efficiencies. 

ITER 
Material 

Radionuclide Activity (Bq g-1) 

Zn-65 Zr-95 Nb-95 Ag-110m Ta-182 Hf-181 W-181 W-185 

ITER#1 50±2 <22.6 491±50 n/a <3.46 n/a n/a n/a 
ITER#2 52±2 <24.4 637±64 n/a <3.67 n/a n/a n/a 
ITER#3 47±2 <14.7 597±47 n/a <2.11 n/a n/a n/a 
ITER#4 47±3 <30.6 566±74 n/a <4.39 n/a n/a n/a 
ITER#5 52±2 <29.3 616±67 n/a <4.39 n/a n/a n/a 

ITER#10 39±2 <37.8 <349 n/a <5.53 n/a <5.24 n/a 
ITER#12 25±1 <10.8 514±37 3.4±0.2 22.3±0.6 n/a n/a n/a 
ITER#13 20±1 22±2 680±47 1.9±0.1 <6.58 n/a n/a n/a 
ITER#14 13.5±0.6 n/a n/a n/a 140±2 56±3 (91±5)x103 (208±21)x103 
ITER#16 44±2 <13.5 556±42 n/a 73±1 n/a <2.43 n/a 
ITER#17 42±2 <14.0 528±42 n/a 71±1 n/a <2.05 n/a 
ITER#18 58±3 <11.3 848±57 n/a 532±8 n/a <2.38 n/a 
ITER#19 55±2 n/a n/a n/a (1.09±0.02)x103 n/a 303±43 n/a 
ITER#20 47±2 n/a n/a n/a (5.26±0.07)x103 n/a <10.5 n/a 
ITER#21 44±2 <12.1 <106 n/a <1.12 n/a <1.08 n/a 
ITER#23 53±2 <14.4 <129 n/a <2.12 n/a n/a n/a 
ITER#26 38±2 <14.5 345±36 n/a <2.23 n/a <2.07 n/a 
 
A detailed study quantitatively comparing the activity of the 

measured radionuclides from the ITER materials with those 
expected from FISPACT-II calculations will be conducted in the 
future. This will focus on supplying ITER with knowledge that can 
be used to understand how activate their construction materials will 
become during ITER’s deuterium and tritium operations and 
highlight any impurities that might be of concern to them. An initial 
assessment will be discussed here that compares the radionuclides 
measurements with those expected from the FISPACT-II 
calculations. The FISPACT-II calculations were performed using 
TENDL2019 (Koning, et al., 2019). A breakdown of this is given in 
Table 3, which shows the radionuclides that were both measured 
and predicted by FISPACT-II, predicted by not measured, and 
measured but not initially expected based on the FISPACT-II 
calculations. The radionuclides measured in Table 3 take into 
account radionuclides that were identified from either the BEGe or 
CSS spectra. Note that the FISPACT-II calculations used in this 
report were initial scoping calculations with the primary purpose of 
predicting the total activity of the ACT irradiation holder so that a 

date for extraction from the JET LTIS could be safely selected. 
Therefore, these FISPACT-II calculations are not as rigorous as 
they will be for the quantitative investigation as they do not use the 
full irradiation schedule experienced by the LTIS but only the D-T 
campaign, and may not have used the most accurate material 
definitions with all known impurities for the ITER materials. 

There were a few radionuclides, namely Sc-46, Fe-59, Hf-181, 
W-181 and W-185, where there was an agreement between 
measurements and predictions across all of the ITER materials. 
Most of these align with the fact that these radionuclides were not 
included in the analysis libraries where they were not expected. For 
example, Hf-181 and W-185 were only included in the tungsten 
library, but there was no evidence of their peaks in the other 
material spectra. Cr-51, Co-56, Y-91, Zr-95, and Nb-95 were 
radionuclides that were expected in more foils than they were 
measured but not measured in any material where they were not 
predicted. This does necessarily mean that these nuclides were not 
present in the foils but that the activity was less than the MDA so 
could not be measured. The reason that the activity might be below 
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the MDA is jointly caused by the short half-life of these nuclides 
compared with the time that had passed post-irradiation and a 
potentially low number of reactions producing these nuclides. For 
example, 302 days had passed since the end of D-T irradiation and 
the start of the CuCrZr ITER#12 measurement where Y-91 (t1/2 = 
58.51 days) would have passed through 5 half-lives. Additionally, 
the dominant production reaction pathway is Zr-91(n,p)Y-91, and 
since the percentage weight of Zr in CuCrZr is 0.15% and the 
abundance of Zr-91 in zirconium is 11.22% means that the initial 
number of Y-91 nuclide there were produced was likely low as 
well. 

Table 3: List of  ITER materials foils irradiated in DTE2 and 
analysed by UKAEA, along with the nuclides measured that were 
also predicted by FISPACT-II (green), not predicted (blue), and 

predicted but not measured (orange). 
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Material 
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ITER#1 SS316L(N) – vv plate 
(Industeel)                  

ITER#2 SS316L(N) – vv plate 
(R. Kind)                  

ITER#3 SS316L(N) – vv plate 
(Thyssen)                  

ITER#4 SS316L(N) – TF radial 
plate                  

ITER#5 SS316L(N) – TF radial 
plate                  

ITER#10 Alloy 660 – divertor                  

ITER#12 CuCrZr divertor pipe 
212601                  

ITER#13 CuCrZr divertor pipe 
212606                  

ITER#14 Tungsten Monoblock                  

ITER#16 Divertor XM-19                  

ITER#17 Divertor XM-19                  

ITER#18 Inconel 718                  

ITER#19 Eurofer 97-3                  

ITER#20 Eurofer 97-3                  

ITER#21 Divertor Al-Bronze                  

ITER#23 SS304- In-wall shield                  

ITER#26 Alloy 660 – In-wall shield 
A286                  

 
For the other radionuclides, Mn-54, Co-57, Co-58, Co-60, 

Zn-65, Ag-110m and Ta-182, there was at least one ITER material 
where the radionuclide was identified despite not being expected 
from FISPACT-II calculations. The most notable nuclide identified 
was Zn-65, which was only expected in the Al-Bronze foil 
(ITER#21) due to its small 0.016% zinc content, however, Zn-65 
was measured in every ITER material. One explanation for this 
comes from a surface contaminant deposited during the cutting 
process rather than a material impurity. The foils were cut from 
bulk materials using electrical discharge machining, thus the brass 
wire used likely deposited zinc and copper onto the surface of each 
foil. The foils were not polished to remove surface contaminates 
before loading into the irradiation sample holder. Therefore, any 
deposited zinc on the surface was also irradiated in JET leading to 
the production of nuclides such as Zn-65. Further experimental 
testing using techniques such as WDS on cut foils will be 
performed to confirm this hypothesis, but it is suggested that future 
irradiations should be conducted on activation foils that have been 
polished after being cut. 

The Co-60 was measured but not expected in the tungsten foil 
(ITER#14), which might also be explained through brass surface 

contamination, having a possible production reaction of 
Cu-63(n,α)Co-60. However, given that Mn-54, Co-57 and Co-58 
were also identified in the tungsten foil, which cannot be explained 
by production routes from brass, it is likely that at least part of the 
Co-60 also had another origin. In materials that do not contain 
cobalt, these manganese and cobalt activation product radionuclides 
are typically a result of neutron-induced reactions with iron and 
nickel, such as Fe-54(n,p)Mn-54, Ni-58(n,np)Co-57, 
Ni-58(n,p)Co-58, and Ni-60(n,p)Co-60. Despite the tungsten foil 
being predominately (99.97%) made of tungsten, both iron and 
nickel are stated impurities within the material with maximum 
weight percentages of 0.0002% and ≤0.005% respectively 
according to the material certificates. The FISPACT-II calculation 
used a material definition of 100% tungsten for this foil so any 
activation from impurities would not be accounted for. When 
quantitative analysis between the measurements and FISPACT-II 
calculations is carried out this foil calculation will be performed 
again to capture all information possible for an accurate 
comparison. 

Mn-54, Co-57 and Co-58 were also measured in the CuCrZr 
(ITER#12 and ITER#13) despite not being expected by 
FISPACT-II calculations, for a similar reason. FISPACT-II 
calculations were performed using a material definition that only 
included copper chromium and zirconium. The material certificates 
include impurities of cobalt, niobium, and tantalum. A cobalt 
impurity can explain the presence of Co-57 and Co-58, which 
would have been produced via the reactions Co-59(n,3n) and 
Co-59(n,2n). Performing FISPACT-II calculations again with an 
accurate CuCrZr material definition will be conducted to access 
whether the cobalt impurity leads to a comparable activity of Co-57 
and Co-58. However, the Mn-54 activation product cannot be 
explained by these impurities since the exotic reactions, such as 
Co-59(n,2n+α)Mn-54, required have thresholds of >14 MeV 
generated by D-T fusion reactions. Therefore, there might be a 
previously unknown iron impurity in the CuCrZr that is not 
accounted for by the material certificate. WDS or APT 
measurements on CuCrZr will be conducted to confirm this. 

In the case of Ta-182, in addition to being detected in the 
tungsten (ITER#14) and Eurofer 97-3 (ITER#19, ITER#20) foils 
where it was expected, it was also identified in CuCrZr (ITER#12), 
XM-19 (ITER#16, ITER#17) and Inconel 718 (ITER#18) where it 
was not expected, whilst not being measured in the SS316L (N) – 
vv plate (ITER#1, ITER#2, ITER#3) foils where Ta-182 was 
expected. Ta-182 has two production routes in the tungsten and 
Eurofer 97-3 samples, from tantalum via the reaction 
Ta-181(n,γ)Ta-182 and from tungsten via the reactions  
W-182(n,p)Ta-182 and W-183(n,np)Ta-182. However, since the 
other ITER materials with measured Ta-182 do not have a tungsten 
component the only production route available is 
Ta-181(n,γ)Ta-182. The three SS316L (N) – vv plate foils have 
tantalum components with stated maximums of 0.01%, 0.008%, and 
0.0031% respectively. With such small tantalum components, any 
activity present from Ta-182 is likely at a level where it is not 
detectable, i.e. <MDA. ITER#12, ITER#16, ITER#17, and 
ITER#18 have comparable maximum tantalum components by 
percentage weight of 0.01%, 0.01%, 0.01%, and 0.05% 
respectively, but Ta-182 was identified in the spectra of these 
materials. One main reason for this is the longer measurement time 
used for these samples resulting in lower MDAs. ITER#1, ITER#2 
and ITER#3 were measured for 6 h, 6 h, and 18 h, whereas 
ITER#12, ITER#16 and ITER#17 were measured for 24 h, and 
ITER#18 were measured for 66 h. As stated above the FISPACT-II 
calculations were performed using a material definition of CuCrZr 
that did not contain the tantalum impurity, which might explain why 
Ta-182 was not predicted. This is also the case for XM-19 and 
Inconel 718 where some of the minor impurities including tantalum 
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were not in the material definitions used for the FISPACT-II 
calculations.  

The final radionuclide, Ag-110m, was only identified in the 
CuCrZr spectra but was not expected and cannot be explained by 
impurities listed in the material certificates that were not included in 
the FISPACT-II calculations. Therefore, the presence of Ag-110m 
suggests that there is another impurity in CuCrZr. Since the foils 
underwent neutron-induced activation, the two most likely 
elemental impurities are silver and cadmium through reactions such 
as Ag-109(n,γ)Ag-110m or Cd-110(n,p)Ag-110m. If cadmium was 
the impurity, the only other long-lived gamma-emitting nuclide that 
might also have been produced is Cd-109. However, Cd-109 only 
has a weak gamma emission at 88 keV with 3.6% intensity and the 
abundance of seed nuclide Cd-108 is only 0.888% so the number of 
Cd-109 nuclides that will have been produced might be <MDA. If 
silver was the impurity, one might expect Ag-108m to also be 
produced. Ag-108m does have gamma lines with high intensity but 
with a half-life of 438 years, it is not easily detectable within the 
period of the 24 h measurement. Therefore, at the current stage, 
there is not enough information to say whether the impurity is 
cadmium or silver. There are a few techniques planned to yield 
further information on this impurity from WDS and APT to further 
measurements. The additional measurement will specifically focus 
on the better determination of the Ag-110m activity and potentially 
revealing the presence of Ag-108m by dissolving part of the foil in 
nitric acid before precipitating out AgCl and conducting a 
measurement for a long time on a low background spectrometer. 

5. Conclusion 
In conclusion, 67 ITER materials and 21 dosimetry activation 

foils were irradiated in JET during the recent D-T, T-T and clean-up 
D campaigns. The activation foils were extracted from the LTIS and 
distributed to several European labs for gamma spectrometry 
measurements. 17 ITER material foils were retained by UKAEA for 
measurements and their activities were determined. A qualitative 
comparison between the radionuclides identified by the gamma 
spectroscopy and those expected through FISPACT-II nuclide 
inventory code calculations was carried out. In general, most of the 
expected radionuclides were present in the ITER materials although 
there were a few exceptions. Some of the weaker activity 
radionuclides expected such as Co-56 and Y-91 were not detected 
in any sample, while others such as Cr-51, Zr-95, Nb-95 and Ta-182 
were not identified in every spectrum they were expected. These 
radionuclides were not measurable above the MDA due to a 
combination of their short half-lives in comparison to the time after 
irradiation that the measurements were conducted, and a low 
number of the nuclides being produced given the small reaction rate 
and low content of the seed nuclide in the material. 

There were also some nuclides detected that were not predicted 
by FISPACT-II calculations. Most of these, such as Mn-54, Co-57, 
Co-58, Co-60 and Ta-182, appear to be a result of the FISPACT-II 

calculations not accounting for minor impurities in the samples. 
Quantitative analysis will perform the FISPACT-II calculations 
again with material definitions that include these impurities. 
However, Mn-54 cannot be explained through the missed impurities 
in the CuCrZr foils suggesting there is another unknown impurity of 
iron in the material. Ag-110m was also identified in the CuCrZr 
spectra, which was not expected and indicated that there is either a 
silver or cadmium impurity in the material. Further experiments are 
planned to determine if the material does contain silver. Zn-65 was 
predicted in one of the 17 ITER materials measured but was 
detected in all of them. This was attributed to a brass surface 
contaminant on the foils resulting from the electrical discharge 
machining used to cut the foils. Future irradiations in JET will test 
this hypothesis but grinding some of the samples after they have 
been cut to remove any surface contaminants. 
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Abstract 

The spent fuel elements contain some radioisotopes with a very high level of radioactivity, and half-lives greater than 10 
years that may have a high enough economic value for recovery, especially 137Cs.  The separation method of 137Cs was 
carried out by the cation exchange using Lampung zeolite.  The preparation of the 137Cs-zeolite was carried out 
gravimetrically using a calibrated semi-micro balance.  There were 15 point sources and 4 extended volume sources in vials 
containing zeolite with 137Cs incorporated in the zeolite matrix.  Activity and impurity measurements were carried out using 
gamma spectrometry. The measured specific activity value of 137Cs was 84.3 Bq/g with an expanded uncertainty of 3.4%, at 
k=2.  Validation was carried out by comparison with 137Cs standard solutions.  There were not siqnificant difference between 
standard solutions of 137Cs and 137Cs-zeolite. 
 
Keywords: Spent fuel, 137Cs, cation exchange, Lampung zeolite. 
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5. Introduction 

From 2002, the Multi-Purpose Reactor G.A. Siwabessy (RSG-
GAS) in Serpong, Indonesia uses U3Si2/Al type fuel with a density 
of 2.96 gU/cm3 for the Material Testing Reactor (MTR) type. 
U3Si2/Al fuel with an enrichment of 19.75% was irradiated at RSG-
GAS with a burn up by 56% and produced several fission and 
activation products together with heavy elements such as 137Cs, 
134Cs, 90Sr, 235U, 238U, 234U, 236U, 239Pu, and 148Nd (Kim J.S.. et. al, 
2015). After allowing for short-lived radionuclides to decay for 
≥101 days, the U3Si2/Al fuel is sent to the Radiometallurgical 
Installation (IRM) hot cell for post irradiation examination. The 
post-irradiation tests aim to determine the performance of nuclear 
fuel during irradiation at RSG-GAS. These tests include 
determination of the strength of the AlMg2 cladding, the stability of 
the fuel cladding and the compatibility of the fuel and the fuel 
cladding. The post-nuclear fuel irradiation tests consist of non-
destructive tests (defects, dimensions, swelling) and damage tests 
(metallographic analysis to observe microstructure, and physico-
chemical analysis to determine burn-up). The post-irradiation test 
data is then used as feedback to the RSG-GAS to determine the 
performance of the fuel and to the fabricator to evaluate the 
optimisation of fabrication parameters in developing the fuel. In 
addition to knowing the performance of the fuel, the burn-up data 
obtained from destructive testing is used to prove the suitability of 
the burn-up data calculated using the Origen software program by 
RSG-GAS. The amount of burn up may not exceed the limits set 
by the Regulatory Agency (BAPETEN and IAEA) for the safe 
operation of the RSG-GAS, currently 56% (Report of Safety 
Analysis (Indonesian), 2021). 

The determination of post-irradiation U3Si2/Al fuel burn-up 
was carried out through physicochemical analysis by cutting the 
fuel plates, dissolving it with 6M HNO3 and 6M HCl.  Meanwhile, 
the separation caesium from uranium is carried out by cation-anion 
exchange method. Physicochemical analysis aims to determine the 
content of the isotopes 137Cs and 235U in the fuel formed through 
nuclear fission during reactor operation. The type of isotope that 
can be used as an indicator of burn-up, the most widely used of 
which is the ratio of 235U burned (Ui) to the initial 235U (Uo) or the 

ratio (𝑈௜ 𝑈௢
ൗ ). The original 235U isotope (Uo) is the 235U content 

present in nuclear fuel at the time of manufacture. In addition to the 

ratio (𝑈௜ 𝑈௢
ൗ ), the ratio 134Cs/137Cs is also often used as an indicator 

to burn up (Peng Hong Lim, et al, 2013). The basis for selecting 
the 134Cs/137Cs ratio as an indicator of burn up is because 134Cs and 
137Cs are isotopes that are in the region of the majority of the 
gamma (I) intensities, have a small () neutron absorption profile 
and have a long half-life (T1/2) of 30.018 years (Aslina and Liem, 
2015, Be, et al, 2006).  

Lampung zeolite is one of the natural products in Indonesia 
originating from the Lampung province of Indonesia. The Lampung 
province, especially the area of Campang Tiga, and Talang Baru have 
total zeolite resources of 127 million tons consisting of a measured 
resource of 27 million tons and an inferred resource of 100 million 
tons. Natural zeolite is a hydrated aluminum silicate compound, with 
the main elements consisting of alkaline and alkaline earth cations. 
This compound has a three-dimensional structure and has pores that 
can be filled with water molecules. The use of zeolite is widespread, 
and it is found in diverse products such as industrial raw materials, in 
water treatment, liquid waste cleaners, the agricultural, livestock, 
fisheries, cosmetic, pharmaceuticals and others. In this study Lampung 
Zeolite was used to separate the radioactive material caesium from 
various other materials.  

The development of nuclear medicine techniques in Indonesia 
is very rapid. More than 100 dose calibrators are owned by around 
20 hospitals in Indonesia. Dose calibrators need a standard source 
for routine quality checks to ensure consistency and relative 
accuracy. Due to price and other procurement issues, mos hospitals 
do not have standard sources for quality checks. Their dose 
Calibrators are only calibrated once a year to the national reference 
laboratory, PTKMR-BATAN.  

The Secondary Standard ionization chamber of the PTKMR-
BATAN is a Capintec CRC-7BT radionuclide calibrator that is 
used as a working chamber for the routine dissemination of the 
activity standards for photon emitting radionuclides. The calibrator 
is subject to regular quality checks to ensure consistency and 
relative accuracy, using standard sources from National Metrology 
Institutes (NMIs), namely the National Measurement Institute of 
Japan (NMIJ), the Physikalisch-Technische Bundesanstalt (PTB), 
and the National Institute of Standards and Technology, NIST).  
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Table 5: Uncertainty components for the R-value determined for 
hospital radionuclide calibrator for 137Cs-zeolite 

Source of uncertainty 
Std. uncert. components (%) 

Type B Type B 
Cal.fact. for gamma spect. Syst.  1.7 
Cal.fact. for Capintec rad cal.  2.5 
Nonlinear. for Capintec rad cal.  0.35 
Stability of rad cal  0.4 
Sample mass  0.05 
Sample volume  0.1 
Half life of 137Cs-zeolite  0.0998 
Statistic counting 0.50  
Quadratic sum 0.25 9.4 
Combined standard uncertainty 3.1 
Expanded uncertainty (k=2) 6.2 
  
  
4. Conclusions 

Preparation of 137Cs source of Nuclear Fuel Element Plate 
U3Si2/Al post-irradiation had been carried out by the cation 
exchange method using Lampung zeolite. Standardization of 137Cs-
zeolite was carried out by gamma spectrometry. The degree of 
homogeneity of 137Cs-zeolite is below 1.5%. The activity values 
had a combined uncertainty of 1.7% at k=1. The results were used 
to calibrate the PTKMR secondary standard ionization chamber. 
The calibration factor values were not significantly different 
between using 137Cs solution and 137Cs-zeolite. A 137Cs-zeolite 
source can be used as a calibrator source and a quality control for 
nuclear medicine equipments in Indonesia 
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