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1    Introduction

The potential of a simplified method of superposition of configurations for studying the
energy spectra of atoms and ions has been discussed in some earlier papers[1-4]. In this
method a part of admixed configurations, obtained mainly by one-electron excitations, is
taken into account directly when calculating the multi-configurational energy matrix,
whereas the correlation corrections, connected with the majority  of configurations, obtained
by virtual two-electron excitations, are accounted for in second-order perturbation theory as
corrections to Slater integrals and similar quantities [4]. Such an approach allows us to take
into consideration a fairly large number of admixed configurations, preserving a
comparatively small order of the matrix to be diagonalized. This is of extreme importance for
calculations of energy spectra of complex configurations.

The possibility to approximately account for a large number of admixed configurations (in
the second order of perturbation theory) has allowed us to avoid the use of solutions of multi-
configurational equations and to employ the so-called transformed radial orbitals, obtained
from Hartree-Fock functions of the configuration considered, with the help of simple
algebraic multipliers of the type of various positive degrees of a radial variable. The main
advantage of this approach is the exceptional simplicity of the generation of the basis
combined with its fairly high efficiency. Recently a similar approach has been also applied to
the relativistic Dirac-Hartree-Fock approximation [5,6].

This paper is aimed at exploring the possibility to apply such a method for calculations of
electronic transitions in atoms and ions. We expect a fairly high efficiency because of the
following facts:

1) The transformed radial orbitals are fairly useful for calculations of matrix elements of
the operators of electronic transitions [7].

2) It follows from the above-mentioned publications that the approach under
consideration allows the determination of fairly accurate wavelengths. This is rather
important when calculating the majority of characteristics of electronic transitions.

3) The high accuracy of the energy levels of a configuration leads to sufficiently accurate
weights of the wave functions of a pure coupling scheme, obtained after diagonalization
of the energy matrix. This also contributes to an increase in the accuracy of the matrix
elements of the electronic transitions.

4) The approach used allows us to include in the multi-configurational wave function
practically all necessary configurations - both giving the principal contributions to the
expansion as well as the most important ones for the electronic transition considered.



2    Results of the Calculation of the Transition 2s22p2-2s2p3 in O III

Let us consider the electronic transitions 2s22p2 - 2s2p3 in O III. These transitions were studied
by many authors, therefore we can compare our results with fairly accurate theoretical and
experimental data. Moreover, the role of correlation effects is very important for these
configurations.  Therefore, it will be possible to estimate how accurately we are taking them into
account.

The transformed radial orbitals  were defined as follows:
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(N is the normalizing factor). They are orthogonalized to all Hartree-Fock  and transformed
functions already included in the basis used. The values of n′l′,  k and nl are presented in Table 1.

Table 1:  Parameters of the transformed radial orbitals used.
n′l′ k nl n′l′ k nl n′l′ k nl n′l′ k nl n′l′ k nl
5s 1 2s 5p 1 2s 5d 2 2s 5f 3 2s 5g 4 2s
6s 1 2p 6p 1 2p 6d 1 2p 6f 2 2p 6g 3 2p
6h 3 2p 7s 2 2s 7p 2 2s 7d 3 2s 7f 4 2s
7g 5 2s 8s 2 2p 8p 2 2p 8d 2 2p 8f 3 2p
8g 4 2p 8h 5 2p 9s 1 1s 9p 1 1s 9d 2 1s

The quantum numbers of the radial orbitals which according to [7] play the main role while
refining the matrix elements of the transition operator are underlined. In this approach the
principal quantum numbers n have no physical meanings and they have nothing to do with the
numbers of nodes of the radial orbital considered. Their values starting with n = 5  were used.

While calculating the energy matrix and, correspondingly, multi-configurational wave
function (as in [4] for calculations of the energy spectra), the fairly important quasidegenerate
configuration  2p4 was admixed to 2s22p2 , as well as all configurations obtained from these two by
one-electron excitations. Moreover, all configurations necessary to improve the matrix element of
the transition operator and obtained from the configuration 2s2p3 by one electron excitations in
states of opposite parity [7]  were automatically included in the matrix. The contributions of the
remaining possible admixed configurations were taken into consideration in second order
perturbation theory in terms of the corrections to the radial integrals of electrostatic interactions
and similar quantities. The configuration 2s2p3 has no configurations of the same parity which
are quasidegenerate to it.  When improving it, all possible one-electron admixed configurations
were taken into account to form the energy matrix as well as the configurations obtained from
2s22p2 and, due to strong mixing, from 2p4 by one-electron excitations in the states of the opposite
parity [7]: 2s22pnis; 2s22pnid.  It is necessary to underline that according to the above-mentioned
list, configurations of the kind 2p3nis and 2p3nid  must be included.  However, they already
appeared earlier as the result of one-electron excitation of the configuration considered.

The results obtained for some transitions are presented in Table 2. It contains the
experimental wavelengths and the oscillator strengths (gf) of electric dipole transitions, calculated
in the single-configuration Hartree-Fock (HF) approximation and with the method of simplified
superposition of configurations (SSC) as well as calculated with the usual superposition of
configurations approach with the same radial orbitals accounting for a complete set of possible



admixed configurations (SC). In the latter case the order of the matrix to be calculated and
diagonalized increases many times.  The table also contains recommended data on oscillator
strengths [8] as well as the results of multi-configuration calculations [9]. Our results are
presented for both the “length” (L) and “velocity” (V) forms of the transition operator. Moreover,
the upper lines contain ab initio values whereas the lower ones contain data obtained  using
experimental energy values.

As seen from Table 2, the results obtained in the SSC and SC approaches differ
insignificantly, especially for the case of the “length” form of transition operator. They are very
close to the data found using more elaborate methods [8,9] and are not significantly improved
when using experimental energy values. As was expected, the largest discrepancies occur when
calculating intercombination transitions. The SSC data, obtained for the “velocity” form of the
transition operator, are slightly  less accurate. This may be an indication that the basis of radial
orbitals used is not sufficiently complete while using this operator.

3    Conclusion

The numerical data presented indicate that the method of simplified superposition of
configurations (SSC), in which only part of the admixed configurations is directly taken into
account when calculating the energy matrix, whereas the majority of admixed configurations,
obtained by two-electron virtual excitations, are accounted for in second-order perturbation
theory, is fairly efficient not only for calculations of the energy spectra, but also for studies of
electronic transitions. This method may be easily applied to study complex electronic
configurations, having several open shells, and, thus, may efficiently contribute to the generation
of accurate  atomic data for relevant databases..
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Table 2:  Oscillator strengths (gf) for some electric dipole transitions in OIII.
LSJ-L′S′J′ λexp(A) HF SSC SC [8] [9]

3P2-
3D3 835.289 L 0.841

0.856
0.431
0.433

0.456
0.451

0.438 0.44

V 0.492
0.489

0.464
0.469

3P0-
3D1 832.929 L 0.203

0.207
0.104
0.105

0.110
0.109

0.106 0.107

V 0.118
0.118

0.112
0.114

3P2-
3P2 703.854 L 0.541

0.550
0.499
0.499

0.524
0.516

0.510 0.505

V 0.515
0.516

0.522
0.530

3P2-
3S1 508.178 L 1.392

1.343
0.906
0.918

0.945
0.932

0.935 0.925

V 1.014
1.002

0.976
0.990

3P0-
3S1 507.388 L 0.277

0.268
0.180
0.183

0.188
0.186

0.186 0.185

V 0.202
0.199

0.194
0.197

1D2-
1D2 599.590 L 2.682

2.557
1.414
1.438

1.485
1.469

1.455 1.460

V 1.674
1.647

1.557
1.574

1D2-
1P1 525.794 L 1.008

0.972
1.158
1.163

1.209
1.188

1.195 1.160

V 1.199
1.194

1.225
1.246

1S0-
1P1 597.814 L 0.668

0.684
0.241
0.242

0.246
0.244

0.240 0.250

V 0.312
0.311

0.269
0.272

3P2-
1D2 535.481 L 1.01-4

.959-4
.440-4
.444-4

.525-4
517-4

.555-4 .585-4

V .428-4
.424-4

.553-4

.561-4
1D2-

3D3 1002.49 L .347-4
.364-4

.179-4

.181-4
.190-4
.190-4

.190-4 .200-4

V .343-4
.338-4

.319-4

.319-4


