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1 Introduction

The relatively high abundances of iron group elements in stellar objects stimulates interest in these
elements. The need for accurate laboratory data is further increased due to the launch of high
dispersive space laboratories such as the Goddard High Resolution Spectrograph on board the
Hubble Space Telescope [1].

Being an odd-Z number element cobalt is far less abundant than the even-Z iron group elements,
Cr, Fe and Ni. However, Co II lines appear up to OB-type stars and are observed in absorption in
the interstellar medium (ISM). This requires accurate transition probabilities (oscillator strengths)
for transitions from the low lying levels in the (3d8 + 3d74s) system, which is responsible for the
absorption lines.

State of the art experimental values from radiative lifetimes and branching fractions are accu-
rate, but restricted to a limited number of transitions [2].

Advanced computer codes exist to calculate energy level values and wave functions ab initio.
These codes allow the introduction of very many interacting con�gurations. Ab-initio calculations
are powerful in relatively simple systems with one term outside the closed shell only. In that
case the system is dominated by electrostatic interactions, mixing levels of di�erent con�gurations
having the same term names.

In iron group and other transition group elements, in which we deal with several d-electrons the
systems show many terms of di�erent multiplicity and total angular orbital moment (L) within a
relatively small energy range. Including more and more correlation is not the point in calculations
of transition elements. These systems are dominated by magnetic interactions, of which the Spin-
Orbit interaction is strongest. These magnetic interactions are responsible for the mixing of levels
with the same total angular momentum J, but with di�erent multiplicity (2S+1) or di�erent orbital
angular momentum (L). This e�ect strongly a�ects transition probabilities or oscillator strengths
and is responsible for the appearance of intercombination lines. Therefore, for the iron group
elements, it is far more important to describe well the magnetic mixing that appears from the
spacing between levels of the same J-value and the non-diagonal magnetic matrix element between
them, than to include more con�gurations.

The orthogonal operator approach, developed over the last years [3], provides the possibility to
describe spacings between levels far more accurate by than other computational methods. The or-
thogonal operator approach is a semi-empirical method, in which the eigenvalues of the Hamiltonian
are �tted to experimental energy values by adjusting the electrostatic and magnetic interactions of
the Hamiltonian. The method is basically founded on the Slater-Condon Theory. However, their
interactions, as used by the Cowan method, are orthogonalized in our method. This stabilizes the



�tting, makes the operators as independent as possible and o�ers the possibility of adding higher
order electrostatic and magnetic e�ects; thus far, these interactions had to be left out as they cor-
rupted the least squares �tting procedure. The extension of the Hamiltonian results in a far smaller
average deviation. This implies a better description of the level structure, i.e. the spacings between
the levels, resulting in optimal eigenvector compositions. These intermediate eigenvectors are used
to sandwich the pure LS-transition probabilities. Afterwards these quantities are multiplied by the
electric dipole transition integrals. The latter (see Table 1) are obtained by means of the MCDF
code of Parpia et al. [4] and corrected for core-polarization.

2 Results

As input for the �tting procedure, level values obtained by Pickering et al. [5] were used. The levels
included covered (3d8 + 3d74s + 3d64s2 + 3d74d + 3d75s + 3d75d + 3d76s) for the even system and
(3d74p + 3d64s4p + 3d54s24p + 3d75p + 3d74f) for the odd system. For studying the resonance
transitions in the (3d8 + 3d74s) - 3d74p transition array only the three lowest con�gurations in
both systems are relevant. In the even system the mean deviation, the average deviation between
the calculated eigenvalues and the experimental energy values, is 39 cm�1, mainly due to some
larger deviations in the 4d- and 5d con�guration. For most of the levels in the the lowest even
con�gurations the deviation is only a few cm�1. In the odd system the mean deviation is 19
cm�1. Using the level values and eigenvector compositions of the two lowest even and the lowest
odd con�guration results in a large number of oscillator strengths and wavelengths, which will be
published elsewhere [6]. Here we restrict ourselves to giving the oscillator strengths for lines from
the lowest even multiplets recently measured by Mullman et al. [2] and kindly provided to us by
Lawler, present at the ICAMDATA conference. In Table 2 our values are given together with the
experimental values of Mullman et al. and values from the Kurucz database [7]. Our results agree
very well with those of Mullman et al., solving some large discrepancies between Mullman and
Kurucz data. These discrepancies not only concern weak intercombination lines but also the strong
resonance transitions between the lowest even term 3d8 3F levels and 3d7(4F)4p 3F and 3G levels
(see lines at 2027.040 �Aand 2025.760 �A). For sixteen of the twenty-eight lines, given by Mullman
et al. [2], our values are within Mullmans error bars, and nineteen are within 10%. Only a few
weaker lines with log(gf) values around -2.0 show larger deviations.
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Table 1: Values for the electric dipole transition integrals in Co II calculated by means of MCDF
including core polarization

3d8 3d74s 3d64s2 3d74d 3d75s 3d75d 3d76s

3d74p .79 -2.65 - -3.20 2.13 -0.79 0.57
3d64s4p - 0.65 -2.44 - - - -
3d54s24p - - 0.55 - - - -
3d75p 0.22 0.03 - 4.88 -6.41 -6.00 4.89
3d74f 0.19 - - -5.56 - 7.32 -



Table 2: Comparison between theory and experimenta of log(gf)-values for the (3d8+3d74s) !
3d74p transitions involving the lowest even multiplets.

�(�A) experimenta present Kuruczb Jf Ef ( cm
�1) even Ji Ei( cm

�1) odd

2693.091 -2.20 -2.09 -1.94 2.0 13260.69* 1j32P) 3.0 50381.72* 1j43F)
3F

2587.220 0.037 0.028 -0.49 3.0 10708.33* 2j43F)
3F 4.0 49348.30* 1j43F)

3G
2580.326 0.36 0.39 0.43 4.0 9812.86* 2j43F)

3F 5.0 48556.05* 1j43F)
3G

2564.034 0.07 0.072 0.31 3.0 10708.33* 2j43F)
3F 4.0 49697.68* 1j43F)

3F
2559.405 -0.21 -0.17 0.17 2.0 11321.86* 2j43F)

3F 3.0 50381.72* 1j43F)
3F

2546.160 -1.61 -1.64 -1.61 2.0 11651.28* 1j12D) 2.0 50914.32* 1j43F)
3F

2528.616 0.06 0.10 0.32 4.0 9812.86* 2j43F)
3F 4.0 49348.30* 1j43F)

3G
2524.974 -0.06 0.003 0.005 2.0 11321.86* 2j43F)

3F 2.0 50914.32* 1j43F)
3F

2519.823 -0.14 -0.11 -0.76 3.0 10708.33* 2j43F)
3F 3.0 50381.72* 1j43F)

3F
2506.464 0.05 0.062 -0.47 4.0 9812.86* 2j43F)

3F 4.0 49697.68* 1j43F)
3F

2486.441 -0.54 -0.51 -0.48 3.0 10708.33* 2j4
3
F)3F 2.0 50914.32* 1j4

3
F)3F

2464.199 -0.42 -0.39 -0.66 4.0 9812.86* 2j43F)
3F 3.0 50381.72* 1j43F)

3F
2245.129 -0.35 -0.29 -0.51 4.0 4028.99* 2j4

3F)
5F 5.0 48556.05* 1j4

3F)
3G

2232.072 -1.08 -1.06 -1.89 3.0 4560.79* 2j4
3F)

5F 4.0 49348.30* 1j4
3F)

3G
2214.793 -1.02 -1.03 -0.97 3.0 4560.79* 2j43F)

5F 4.0 49697.68* 1j43F)
3F

2211.428 -1.21 -1.22 -1.38 5.0 3350.49* 2j43F)
5F 5.0 48556.05* 1j43F)

3G
2200.421 -1.45 -1.45 -1.39 2.0 4950.06* 2j43F)

5F 3.0 50381.72* 1j43F)
3F

2188.999 -2.08 -1.96 -1.80 4.0 4028.99* 2j43F)
5F 4.0 49697.68* 1j43F)

3F
2187.039 -2.03 -1.91 -1.97 1.0 5204.70* 2j43F)

5F 2.0 50914.32* 1j43F)
3F

2173.335 -1.81 -1.98 -1.85 5.0 3350.49* 2j43F)
5F 4.0 49348.30* 1j43F)

3G
2156.950 -2.09 -2.08 -2.67 5.0 3350.49* 2j43F)

5F 4.0 49697.68* 1j43F)
3F

2065.542 -1.07 -1.11 -0.85 3.0 950.32* 1j3
2
F) 4.0 49348.30* 1j4

3
F)3G

2058.817 -1.17 -1.24 -0.93 4.0 .00* 1j3
2F) 5.0 48556.05* 1j43F)

3G
2027.040 -0.57 -0.57 -0.29 2.0 1597.20* 1j3

2F) 2.0 50914.32* 1j43F)
3F

2025.760 -0.95 -0.98 -0.26 4.0 .00* 1j3
2F) 4.0 49348.30* 1j43F)

3G
2022.354 -0.49 -0.48 -0.44 3.0 950.32* 1j3

2F) 3.0 50381.72* 1j4
3F)

3F
2011.516 -0.48 -0.40 -0.38 4.0 .00* 1j32F) 4.0 49697.68* 1j43F)

3F
2000.793 -2.15 -1.92 -1.68 3.0 950.32* 1j32F) 2.0 50914.32* 1j43F)

3F
a Mullman et al. [2] b Kurucz [7]
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