Electron Transport Coefficients in C$_2$F$_6$-Ar Mixtures and Inelastic Cross Sections for the C$_2$F$_6$ Molecule

Hiromichi Okumo and Yoshiharu Nakamura

Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223, Japan

1 Introduction

Hexafluoroethane(C$_2$F$_6$) is used as a working gas for diffuse discharge switches and etching plasmas for materials processing and also as a gaseous insulator in high voltage equipment. But the present state of cross section data for the molecule is not reliable enough for numerical simulations. We have been studying electron collision cross sections of molecules by the measurement of electron swarm parameters in dilute molecular gas-rare gas mixtures and in the pure molecular gas. Electron swarm parameters in the mixtures are very sensitive to the vibrational cross sections of the molecule and the elastic cross section of the rare gas atom and are nearly insensitive to the elastic cross section of the molecule. We, therefore, were able to derive detailed information on the vibrational cross sections of the molecule from the electron swarm parameters, measured in the dilute molecular gas-rare gas mixtures exclusively. The swarm parameters in the pure molecular gas, on the other hand, depend on the elastic and inelastic cross sections of the molecule, and, once the inelastic cross sections were known, we were able to derive the elastic cross section for the molecule from the measured swarm parameters measured in the pure molecular gas.

Presented in this report are the experimental results for the drift velocity and longitudinal diffusion coefficient of electrons in dilute C$_2$F$_6$-Ar mixtures and the derived vibrational excitation cross sections which are consistent with the measured swarm parameters.

We are now measuring the swarm parameters in the pure C$_2$F$_6$ gas and we are going to derive the elastic cross section for C$_2$F$_6$ using the present vibrational cross sections after completion of the measurements.

2 Measurements

We used the double shutter drift tube [1] with variable drift distances (1 - 10 cm) for the measurements of the electron drift velocity, W, and the product of the gas number density and the longitudinal diffusion coefficient, ND$_L$, in 0.524% and 5.47% C$_2$F$_6$-Ar mixtures. The ranges of the measurements are shown in Table 1.

The measured electron drift velocities in the mixtures show the Negative Differential Conductivity (NDC) indicating a strong contribution from the vibrational inelastic processes of the C$_2$F$_6$ molecule over the E/N range 2 - 25 Td in the 5.47% mixture, and 0.35 - 20 Td in the 0.524% mixture.

The measured products ND$_L$ in mixtures also show clearly the contributions of the molecular additive in argon. The peaks of the measured ND$_L$ over the E/N range 5 - 20 Td in the 5.47%
Table 1: The ranges of the measurements

<table>
<thead>
<tr>
<th>Mix Ratio (%)</th>
<th>E/N Range (Td)</th>
<th>Gas Pressure Range (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.47</td>
<td>0.04 - 100</td>
<td>1 - 560</td>
</tr>
<tr>
<td>0.524</td>
<td>0.04 - 70</td>
<td>1 - 700</td>
</tr>
</tbody>
</table>

mixture and 1.4 - 7 Td in the 0.524% mixture show the characteristic of perfluoroalkanes, C_nF_{2n+2} (n=1,2,3).

Fig. 1 compares the results of the present measurements of W and ND_L in the 5% and 0.5% C_2F_6-Ar mixtures [2], and of the electron drift velocity W in pure Ar [3].

3 Analysis

The cross sections are shown in Fig. 2. The initial set of cross sections for the C_2F_6 molecule by Hayashi [4] was modified by using a multi-term Boltzmann analysis [5].

We modified the vibrational excitation cross sections for the C_2F_6 molecule until consistent values for W and ND_L were obtained from the measurements. The thresholds of the vibrational excitation cross sections for the C_2F_6 molecule by Hayashi are shown in Table 2.

Table 2: Thresholds of the vibrational excitation cross sections for the C_2F_6 molecule

<table>
<thead>
<tr>
<th>vibrational cross sections</th>
<th>thresholds (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qv6</td>
<td>0.089</td>
</tr>
<tr>
<td>qv5</td>
<td>0.138</td>
</tr>
<tr>
<td>qv7</td>
<td>0.155</td>
</tr>
</tbody>
</table>

The results are shown in Fig. 3 and Fig. 4. The measured drift velocities in the two mixtures agree with the calculated ones over the E/N range 0.04 - 10 Td in the 5.47% mixture, and 0.04 - 4 Td in the 0.524% mixture.

4 Conclusion

We measured two electron swarm parameters, drift velocities and longitudinal diffusion coefficients in 0.524% and 5.47% C_2F_6-Ar mixtures over the E/N range from 0.04 to 100 Td. The measured swarm parameters were compared with those measured in CF_4-Ar and C_3F_8-Ar mixtures with similar mixing ratios. The E/N dependence of the measured swarm parameters clearly indicates possible direction for refinement of the vibrational cross sections.

5 Future work

We will determine the best consistent vibrational cross sections for C_2F_6 from the present measurement in the mixtures. And after that, we will determine the momentum transfer cross section for C_2F_6 from our new measurement of swarm parameters in pure C_2F_6, which has just been started.
References

Fig. 1 W and ND$_L$ as a function of E/N in C$_2$F$_6$-Ar mixtures

Fig. 2 Electron collision cross sections for C$_2$F$_6$
Fig. 3: W and ND$_L$ in the 5.47% C$_2$F$_6$-Ar Mixture

Fig. 4: W and ND$_L$ in the 0.524% C$_2$F$_6$-Ar Mixture