Eighth International Conference on Atomic and Molecular Data and Their Applications (ICAMDATA 2012) NIST, Gaithersburg, Maryland, 1~4 October, 2012

Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

> Satoshi Hamaguchi Osaka University

Acknowledgements

- 1. Numerical Simulation: Tatsuya Kanazawa, Michiro Isobe
- 2. Atmospheric-pressure plasma experiments: Katsuhisa Kitano
- 3. Plasma application experiments for biological systems: Hideki Yoshikawa, Akira Myoui, Yu Moriguchi, Kazuto Masuda, Dae-Sung Lee

"Handbook of Atomic and Molecular Processes in Plasmas"

ed. by S. Hamaguchi, I. Murakami, and D. Kato (Osaka University Press, 2011)

The list of authors also includes Alex M Imai Fumihiro Koike

No Data in this "Handbook"

....

Chap 1 – 10: physics background for data Chap 11-17: applications

Outline

- 1. Motivation and background: plasma technologies for medicine
- 2. Model system: ROS/RON generation in water exposed to low-temperature atmospheric-pressure plasma
- 3. Sample simulations

Low-temperature atmospheric-pressure plasmas

Argon Plasma Coagulator (APC)

Argon Plasma Coagulator (APC)

cauterization by thermal plasma

Plasma Surgical PlasmaJet System (from Plasma Surgical Limited)G. Lloyd, et al., Plasma Process. Polym.7 (2010) 194.

APC basic principles A. Postgate *et al.*, Endoscopy **39** (2007) 361

APC

ERBE (Germany) power consumption:(50-100 W) frequency: 350 kHz plasma temperature : 100°C (current flows in the tissue)

High-frequency Argon Plasma Coagulation unit; left – schematic view, right – interaction with tissue .

E. Stoffels, Contrib. Plasma Phys. **47**, 40 – 48 (2007)

low-temperature atmospheric-pressure plasmas

hand-held plasma jet device

High-speed camera observation

Cross Jet

Cross jet

High speed ICCD camera

Exposure time 50ns Time step 50ns

The ionization front travels along the crossing gas flows

Medical Tools

Plasma medicine

traditional surgical devices

scalpels • electrical scalpels mechanical force/ heat

radiations X-ray, heavy ions

ionization

low-temperature plasma

new generation of plasma device

free radicals, ROS, RON

blood coagulation, would healing, local sterilization, cell proliferation etc.

laser

laser scalpels heat

thermal plasma

argon plasma coagulator heat

Application Method

1 min plasma application each in Day 0 and Day 1 (twice)

Day 0 (before plasma application)

Before Plasma Application area = 89 units (arb) Control

area = 111 units

Day 6

plasma treated: area = 25 units (28%)

untreated: area 87 (78%)

Day 10

plasma treated: area = 12 units (14%)

Day 12

plasma treated

Cell Proliferation

Plasma System

Cell count : WST kit CCK-8 or typan blue & Beckman Coalter Counter

N=3 with a Bonferroni-Dunn test

Human primary culture

90 sec

human synoviocytes (HS) 36hr

HS 36hr

No treat (0 sec)

Exposure 30sec

Exposure 60sec

Exposure 90sec

model system to study

physics questions What reactive species in the gas phase? What reactive species in the liquid? How the reactive pla<mark>sm</mark>a species interact gas with the tissue or cell membranes? liquid tissue

Chemically reactive species generated in liquid have some strong biological effects

ROS (Reactive Oxygen Species) OH (hydroxyl radical), O_2^- (superoxide anion radical), HO_2 (hydroperoxyl radical) etc

RNS (Reactive Nitrogen Species) NO (nitric oxide), NO₂ (nitrogen dioxide), ONOOH (peroxynitrite), ONOOH ⁻

Goal

To understand their generation and reaction processes in liquids by numerical simulations

gas-phase simulation

with rate equations

0 D (i.e., global) simulation for He & H_2O

D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong and M.G. Kong, Plasma Sources Sci. Technol. 19 (2010) 025018

Reactive species generated in atmospheric-pressure plasmas (simulation : in gas phase)

Eliasson B and Kogelschatz U 1991 IEEE Trans. Plasma Sci.19 309

Zero-dimensional numerical simulation of chemical species generated by a microdischarge in a dielectric barrier discharge in air (80% of N2 + 20% of O2, p = 1 atm, T = 300 K).

gas-phase simulation

Rate equations with transport

D. B. Graves, J. Phys. D: 48 (2012) 263001

If all gas-phase species – electrons, ions, and neutral (reactive) species – are known, can we predict what species are generated in liquid exposed to the plasma?

System

- Low temp. Atmospheric
 Pressure Plasma (APP)
 - \rightarrow provide reactive species
- Pure water (pH=7)

Computation

- Rate equations
 0 D simulation
- No transport (no flow or diffusion) in each phase

transport of species between the gas and liquid phases

Henry's law: transport of matters through the gas-liquid interface in equilibrium Henry's law $[OH]_{liq} = k_H P_{OH}$ $= k_H [OH]_{gas} RT_g$

Chemical Reactions (Global Model) 35 chemical species & 98 rate equations

Rate eqn.:
$$\frac{d[H_2]}{dt} = \dots + k_1 [e_{aq}^-][e_{aq}^-] + k_3 [e_{aq}^-][H] + \dots$$

change of density in time = rate const. × product of densities + ···

Reaction Scheme	Rate Constant(at 298K) [M ⁻¹ s ⁻¹]
e_{aq}^{-} + e_{aq}^{-} \rightarrow H_2^{-} + $2OH^{-}$	$k_1 = 5.1 \times 10^9$
e_{aq}^{-} + H ⁺ \rightarrow H	$k_2 = 2.4 imes 10^{10}$
e_{aq}^{-} + H \rightarrow H ₂ + OH ⁻	${ m k}_3$ = $2.5 imes 10^{10}$
e_{aq}^{-} + OH \rightarrow OH ⁻	$k_4 = 3.0 imes 10^{10}$

*NDRL/NIST Solution Kinetics Database on the Web

To understand what reactive species are generated in liquid by *each* gaseous species

Cases

- 1. Only OH (hydroxyl) radicals are provided [from the plasma].
- 2. Only NO (nitric oxide) is provided.
- 3. Both OH and NO are provides (with nothing else).
- 4. After OH and NO are provided for 10 sec. and the plasma is turned off.

 \rightarrow How the reactive species get lost in liquid

Fluxes of OH and NO (typical values from a plasma)

TABLE 1. Typical relative concentrations of various charged and neutral species generated by non-thermal DBD plasma in gas phase.

Plasma-generated species	Density (cm ⁻³)	Density (mol L ⁻¹)
Superoxide (O ₂ ^{•-})	10 ¹⁰ to 10 ¹²	
Hydroxyl (OH [•])	10 ¹⁵ to 10 ¹⁷	1.66×10^{-6} to 1.66×10^{-4}
Hydrogen peroxide (H ₂ O ₂)	10 ¹⁴ to 10 ¹⁶	
Singlet oxygen (¹ O ₂ _)	10 ¹⁴ to 10 ¹⁶	
Ozone (O_3)	10 ¹⁵ to 10 ¹⁷	
Nitric oxide (NO)	10 ¹³ to 10 ¹⁴	1.66×10^{-8} to 1.66×10^{-7}
Electrons (e ⁻)	10 ⁹ to 10 ¹¹	
Positive ions (M ⁺)	10 ¹⁰ to 10 ¹²	

*R.Sensenig et al. Annals of Biomedical Engineering 39 (2011) 674-687

fluxes

$$\frac{S}{V} \cdot \bar{v}_{OH} \cdot [OH]_{gas} = 1.0 \times 10^{-1} \, mol \cdot L^{-1} \cdot s^{-1}$$

$$\frac{S}{V} \cdot \bar{v}_{NO} \cdot [NO]_{gas} = 7.6 \times 10^{-4} \, mol \cdot L^{-1} \cdot s^{-1}$$

Case1 : OH only from the gas phase

NO only from the gas phase

OH & NO supplied simultaneously for 10s

OH & NO supply for 10 s (linear time scale)

OH&NO supplied for 10s and stopped

