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Outline 
• Fullerene (Buckyball) molecules 

• Endofullerenes: atoms in a molecular cage 

• Giant resonances in photoionization 

• Confinement resonances in endofullerenes. 

• Merged-beams experiments with EUV photons and ions 

• Photoionization with fragmentation of  

 Ceq+, C82
+, Ce@C82

+ 

 Xe, C60
+, Xe@C60

+ 



Closed Carbon Polyhedrons (Cn) 
Geometrical Criterion: 
A closed Cn polyhedron 
composed of a carbon 
atom at each intersection 
point may be constructed 
from 12 pentagons and  
n/2 - 10 hexagons (n ≥ 20). 

n Molecule Pentagons Hexagons 

20 C20 12 0 

60 C60 12 20 

70 C70 12 25 

76 C76 12 28 

84 C84 12 32 

“magic” 

numbers 

smallest n 

Fullerene molecules have been observed for even values of n between 20 and 650 

Leonhard Euler 
       1707 - 1783 

http://en.wikipedia.org/wiki/File:Leonhard_Euler_2.jpg


Fullerenes occur naturally in ... 

• chimney soot, forest fires 

• coal deposits 

• meteor impact craters 

• planetary nebulae 



Some fullerenes contain 
an atom inside the cage 

• Shortly after the discovery of C60 in 1985 by 
Kroto, Curl and Smalley, they synthesized 
fullerenes with an atom inside their spherical 
molecular cage (A@C60). 

• These so-called endofullerenes were 
subsequently discovered in meteor, comet and 
asteroid impact craters on the Earth. 

– Isotopic analysis of caged noble gas atoms                
indicates that the endohedral fullerene        
molecules are of extra-terrestrial origin. 

Becker et al, Science 272, 249 (2001); Science 291, 1530 (2001) 



Applications of endofullerenes 
• in medicine 

– for treatment of diseases such as cancer  

– for chemical isolation of toxic or reactive species 

– as a delivery medium for pharmaceuticals 

• in information technology 
– as gates for quantum computers 

• in energy research 
– as a chemical energy storage medium (e.g. for H2) 

– as nanoscale targets for inertial confinement 
fusion 

 



Giant 4d resonance in xenon 

• Xe has a filled inner 4d subshell (10 electrons) 
that may be excited by EUV light. 

• Strong electron correlation leads to the so-
called giant 4d resonance in photoionization of 
Xe. 

• What happens when a Xe atom 
inside a C60 molecular cage 
(Xe@C60) is photoionized? 



Confinement Resonances 
If a caged atom is photo-ionized, the 
outgoing electron de Broglie wave may 

• pass through the cage and escape. 

• be reflected by the cage and then escape. 

Multi-path interference of outgoing 
electron waves is predicted to produce 

        confinement resonances 

 in the photoionization cross section. 



Giant resonance in EUV 
photoionization of a Xenon atom 
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theory and experiment 

Xe atom 

What happens when a 
Xenon atom is ionized 
inside a fullerene cage? 

Xe 

M. Ya. Amusia et al., J. Phys. B 38, L169 (2005) 
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Why search for confinement 
resonances with ions? 

Ions carry a net charge and may be . . . 

• accelerated and formed into beams. 

• directed with a known velocity. 

• selected by charge-to-mass ratio. 

• quantified by current density. 

• detected individually. 



The ALS is one of the world’s brightest  
tuneable extreme ultraviolet light sources 

Lawrence Berkeley National Laboratory 

1.9 GeV Electron Synchrotron 

Ion-Photon-Beam (IPB) 

Merged-Beams 

Research Endstation  

Undulator Beamline 10.0 



Merged photon and ion beams: 
using synchrotron radiation to study 
EUV photoionization of ions at ALS 

photon  
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Experimental search for 
confinement resonances 

• Xe@C60 was unavailable in sufficient quantity 
for an experiment.  

• Like xenon, cerium (a lanthanide) has a filled 4d 
inner subshell and exhibits a giant 4d resonance 
in photoionization. 

• The group of Lothar Dunsch at the Leibnitz 
Institute in Dresden was successful in 
synthesizing the Ce@C82 endofullerene. 

• Available quantities of Ce@C82 (several grams) 
were sufficient to conduct an experiment. 



Charge of Ce inside Ce@C82 

K. Muthukumar and J. A. Larsson, J. Phys. Chem. A 112, 1071 (2008) 

            (prediction based on density-functional theory ) 

charge state +3 
neutral Ce@C82 

 Strong hybridization between Ce 4d orbitals and π orbitals of the cage 

 Ce contributes 3 electrons and is not centered within the carbon cage 

oblate spheroid 
end view side view 



Reference EUV 
photoionization 

measurements for 
free cerium ions 

Photoionization of cerium 
ions in the 110 – 150 eV 
photon energy range is 
dominated by the giant 
resonance due to 
excitation of inner 4d 
electrons  (as in xenon). 
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Total Photoionization Cross Sections 

Ce+ 

Ce2+ 

Ce3+ 

Ce4+ 

Ce5+ 

Ce6+ 

Ce7+ 

Ce8+ 

Ce9+ 

          M. Habibi, Ph.D. thesis (2009) 

Habibi et al.,  Phys. Rev. A 80, 033407 (2009) 



Photoionization of Ce@C82
+
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resonance 

Müller et al., Phys. Rev. Lett. 101, 133001 (2008) 



Photoionization of Ce@C82
+
 near Ce 4d resonance   
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single ionization

4d contributions 

due to caged 

cerium atom 

Müller et al., Phys. Rev. Lett. 101, 133001 (2008) 

No evidence of 
substructure 
due to 
confinement 
resonances ! 
 
Energy position 
of Ce 4d 
resonance 
verified 
theoretical  
prediction that 
Ce has a 
charge of +3 in 
the C82 cage. 

Confinement resonances do not occur in photoionization of Ce@C82
+ because 

  - Ce is not centered within the fullerene cage (destroys interference) 
  - Ce atomic orbitals hybridized due to ionic bonding (broadens Ce 4d feature) 



Ce 4d contributions to double photoionization 
Ce@C82

+ accompanied by loss of n C atoms 
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Fragmentation releases 
carbon atoms in pairs, 
because the product 
fullerene molecule 
must contain an even 
number of C atoms. 
 
 
Ce 4d photoabsorption 
leads to double 
ionization product 
channels for which 
fragmentation  of the 
C60 cage is significant. 



Setup to synthesize Xe@C60 

Ultra-high-purity commercial 
C60 powder was continuously 
evaporated  and deposited 
onto a rotating metal 
cylinder while it was being 
simultaneously bombarded by 
160 eV Xe+ ions. 
 
After weeks of operation, 
the fullerene material 
deposited on the cylinder 
was ‘harvested’ for later re-
evaporation into an ECR ion 
source. 

David Kilcoyne 

::::: 



Simulated and Measured 
High-Resolution Mass Spectrum of Xe@C60

+ 
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Simulation based on natural isotopic 
abundances of C and Xe and a binomial 
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atoms in C60 
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Mass Spectrum from ECR Ion Source 
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Experimental Results: 
Photoionization of C60

+ and Xe@C60
+ 
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ALS Experiment

Double 
photoionization 

of Xe@C60
+ 

with C2 
fragmentation 

producing 
Xe@C58

+++ 

Reference 
measurement 

with empty C60
+ 

producing C58
+++ 

Kilcoyne et al., Phys. Rev. Lett. 105, 213001 (2010)  



Excess Xe 4d cross section in 
photoionization of Xe@C60

+ 

Points:        experiment   

 (90% confidence level) 

 

Curves:       theory 

Kilcoyne et al., Phys. Rev. Lett. 105, 213001 (2010) 
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Measurement suggested 
interference structure 
but was inconclusive due 
to counting statistics. 
 
Strategy: synthesize 
Xe@C60 using a single 
136Xe isotope to 
increase ion beam 
current. 



New experimental results for photoionization with 
fragmentation of C60

+ and 136Xe@C60
+ 

Double 
photoionization 
of 136Xe@C60

+ 
with double C2 
fragmentation 

Corresponding 
reference 

measurement 
with empty C60

+ 

ALS, July 2012 
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Optimization of the operating parameters and use of isotopically 
enriched 136Xe in the synthesis increased the Xe@C60

+ ion beam 
current by more than an order of magnitude! 



Excess Xe 4d cross section in 
photoionization of 136Xe@C60

+ 
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Confinement   
resonances 
do exist! 

 
but … 

 
 interference 
pattern is not 

quite as 
predicted by 

theory 



Excess Xe 4d cross section in 
photoionization of 136Xe@C60

+ 

ALS, July 2012 

 Xe 4d 
photoabsorption in 
Xe@C60

+ leads to 
double ionization, 

and is 
accompanied by 

fragmentation of 
the carbon cage 

about 50% of the 
time. 
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ion channels

f = 1.9

f = 1.7

These three product channels together account 
for 3/4 of the total Xe 4d oscillator strength. 
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Photoionization of  Ceq+ (q=2,3,4) and Ce@C82
+ 
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Ce caged 

As predicted, Ce inside a C82
+ cage has a valency of +3 

 but there is no evidence of confinement resonances 

4d 

Müller et al., Phys. Rev. Lett. 101, 133001 (2008) 


