eq 1
$$F(hkl) = \sum_j \, f_j {\rm e}^{-M_j} \,
{\rm e}^{2\pi\,i(hx_j + ky_j + lz_j)}$$
eq 2
$$n_r=n+ik=\sqrt{\epsilon}=1-\delta-i\beta=1-{r_0\over2\pi}
\lambda^2 \sum_j \,n_jf_j$$
eq 3
$${\rm Re}(f)=f_0+f^\prime +f_{\rm NT}~,\quad f^\prime =f_1+f_{\rm rel}-Z$$
eq 4
$$f_0(q)=4\pi \int_0^{\infty}~
\frac{\rho(r)\sin(qr)r^2~{\rm d}r}{qr} \quad .$$
eq 5
$${\rm Im}(f)=f^{\prime\prime} (E)=f_2(E)=\frac{E\mu_{\rm PE}(E)}{2hc\,r_{\rm e}}$$
eq 6
$$f^\prime(E,Z)=f^\prime(\infty)-{2\over\pi}P \int_0^{\infty}
\frac{\epsilon^\prime f^{\prime\prime}(\epsilon^\prime)}{(\hbar\omega)^2-(\epsilon^\prime)^2}
~{\rm d}\epsilon^\prime \quad .$$
eq 7
$$f^\prime(E)=f^\prime(\infty)-{2\over\pi} P \int_0^{\infty}
\frac{(\epsilon^+-\epsilon_1) f^{\prime\prime}(\epsilon^+-\epsilon_1)}
{(\hbar\omega)^2-(\epsilon^+-\epsilon_1)^2}~{\rm d}\epsilon^+ $$
eq 8
\begin{eqnarray*} f^+ &=&\left(\int_0^\infty \frac{\sigma(\epsilon^+ -\epsilon_1)
(\epsilon^+ -\epsilon_1)^2 -\sigma(\hbar\omega)(\hbar\omega)^2}
{(\hbar\omega)^2 - (\epsilon^+ -\epsilon_1)^2}~ {\rm d}\epsilon^+ \right. \\
~&~& \left.+ P \int_0^\infty \frac{\sigma(\hbar\omega)(\hbar\omega)^2}
{(\hbar\omega)^2 - (\epsilon^+ -\epsilon_1)^2}~ {\rm d}\epsilon^+\right)
/2\pi^2 \alpha \end{eqnarray*}
eq 9
$$ x = \left\{ \begin{array}{l}{l}
\frac{|\epsilon_1|}{\epsilon^+ -\epsilon_1} ~ , & \hbar\omega \simeq 2|\epsilon_1|\\
\left[ \frac{|\epsilon_1|}{\epsilon^+ -\epsilon_1}\right]^2 ~ , &
\hbar\omega \leq \sqrt{2}|\epsilon_1|\\
\left[\frac{|\epsilon_1|}{\epsilon^+ -\epsilon_1}\right]^{1/2} ~ , &
\hbar\omega \gg 2|\epsilon_1| \end{array} \right. \quad . $$
eq 10
$$ f^+ = \frac{1}{2\pi^2 \alpha} \int_0^1 \sigma_i {\rm d}x
- \frac{\hbar\omega}{4\pi^2\alpha} ~\sigma(\hbar\omega) {\rm ln}
\left( \frac{\hbar\omega-\epsilon_1}{\hbar\omega+\epsilon_1} \right)~,\quad
|\epsilon_1|<\hbar\omega~;$$
eq 11
$$\sigma_i = \left\{ \begin{array}{l}{l}
\sigma_2 ~, & \hbar\omega\gg 2|\epsilon_1|\\
\sigma_0 ~, & \hbar\omega\simeq 2|\epsilon_1|\\
\sigma_4 ~, & \hbar\omega\leq \sqrt{2} |\epsilon_1| \quad ;\end{array} \right.
$$
eq 12
$$\sigma_2 = \left\{ \begin{array}{l}{l}
-2\sigma(|\epsilon_1|/x^2) \epsilon_1/x^3 ~ , & |\epsilon_1|/x^2 = \hbar\omega\\
2\left( \frac{\sigma(|\epsilon_1|/x^2) \epsilon_1^3/x^4 -
\epsilon_1(\hbar\omega)^2 \sigma(\hbar\omega)}
{x^3 (\hbar\omega)^2 - \epsilon_1^2 /x} \right) ~ , & {\rm otherwise} \quad ;
\end{array} \right. $$
eq 13
$$\sigma_0 = \left\{ \begin{array}{l}{l}
-\sigma(|\epsilon_1|/x) \epsilon_1/x^2 ~ , & |\epsilon_1|/x= \hbar\omega\\
\left(\frac{\sigma(|\epsilon_1|/x^2) \epsilon_1^3/x^2 -
\epsilon_1(\hbar\omega)^2 \sigma(\hbar\omega)}
{x^2 (\hbar\omega)^2 - \epsilon_1^2 } \right) ~ , & {\rm otherwise} \quad ;
\right. \end{array} \right. $$
eq 14
$$\sigma_4 = \left\{ \begin{array}{l}{l}
-0.5 \sigma(|\epsilon_1|/x^{1/2}) \epsilon_1/x ~ , &
|\epsilon_1|/x^{1/2} = \hbar\omega\\
0.5 \left( \frac{\sigma(|\epsilon_1|/x^{1/2}) \epsilon_1^3/x -
\epsilon_1(\hbar\omega)^2 \sigma(\hbar\omega)}{\sqrt{x} \left[x(\hbar\omega)^2
- \epsilon_1^2 \right]} \right) ~ , & {\rm otherwise} \quad ;
\end{array} \right. $$
eq 15
$$ f^+ = \frac{1}{2\pi^2 \alpha} \int_0^1 \sigma_i {\rm d}x +
\frac{\epsilon_1^2 \sigma(|\epsilon_1|)}{4\pi^2 \alpha \hbar\omega} ~{\rm ln}
\left(\frac{|\epsilon_1|-\hbar\omega}{|\epsilon_1|+\hbar\omega}\right) \quad ;$$
eq 16
$$\sigma_i= \left\{ \begin{array}{l}{l}
sigma_3 ~ , & \hbar\omega \simeq 2|\epsilon_1|\\
sigma_5 ~ , & \hbar\omega \ll 2|\epsilon_1| \quad ; \end{array} \right. $$
eq 17
$$\sigma_3=\epsilon_1^3 \left(
\frac{\sigma(|\epsilon_1|/x)/x^2 - \sigma(|\epsilon_1|)}
{(x\hbar\omega)^2 - \epsilon_1^2}\right) \quad ; $$
eq 18
$$\sigma_5 = 0.5 \epsilon_1^3 \left(
\frac{\sigma(|\epsilon_1|/x^{1/2})/x - \sigma(|\epsilon_1|)}
{\sqrt{x}\left[x(\hbar\omega)^2 - \epsilon_1^2\right]}\right) \quad ; $$
![]() |
![]() |