NIST Physical Measurement Laboratory X-Ray Form Factor, Attenuation, and Scattering Tables Main Page

[skip navigation] National Institute of Standards and Technology NIST Physical Measurement Laboratory

eq 1
$$F(hkl) = \sum_j \, f_j {\rm e}^{-M_j} \, {\rm e}^{2\pi\,i(hx_j + ky_j + lz_j)}, ({\rm TDS} = 0)$$

eq 2
$$n_r=n+ik=\sqrt{\varepsilon}=1-\delta-i\beta=1-\frac{r_{\rm e}}{2\pi} \lambda^2 \sum_j \,n_jf_j$$

eq 3
$$ q = |{\bf K-K}^\prime | = 4\pi \sin (\theta/2)/\lambda \quad ,$$

eq 4
$${\rm Re}(f)=f_0+f^\prime +f_{\rm NT}~,~ f^\prime = f_1+f_{\rm rel}-Z$$

eq 5
$$f_0(q,Z)=4\pi \int_0^{\infty}~ \frac{\rho(r)\sin(qr)r^2 \, {\rm d}r}{qr} \quad .$$

eq 6
$$f^\prime(E,Z)=f^\prime(\infty)-{2\over\pi} \,P \int_0^{\infty} \frac{\varepsilon^\prime f^{\prime\prime}(\varepsilon^\prime)}{E^2-(\varepsilon^\prime)^2} ~{\rm d}\varepsilon^\prime \quad .$$

eq 7
$${\rm Im}(f)=f^{\prime\prime}(E) = f_2(E)= \frac{E\sigma_{\rm PE} (E)}{2hc r_{\rm e}} \quad . $$

eq 8
$$\sigma_{\rm tot} = \sigma_{\rm coh}+\sigma_{\rm incoh} + \tau_{\rm PE}+\kappa_{\rm n}+\kappa_{\rm e}+\sigma_{\rm p.n.}\quad .$$

eq 9
$$ |\psi\rangle = \sum_f \, |f\times f|S|i\rangle$$

eq 10
$$ S_{fi} = \delta_{fi} + 2\pi i \delta(E_f-E_i) T_{fi}\quad .$$

eq 11
$$\Delta\rho(x,y,z) = {1\over V} \sum_h \sum_k \sum_l \Delta F(hkl) {\rm e}^{-2\pi i(hx + ky + lz)}\quad .$$

eq 12
$$I_{\rm e}=I_0 r_{\rm e}^2 \left[ \frac{1+\cos^2 \theta}{2}\right] \quad , \qquad I_{\rm coh}=I_{\rm e} \left( \sum_{j=1}^Z f_j \right)^2 =I_{\rm e} f^2\quad ,$$

eq 13
$$I_{\rm incoh}=I_{\rm e} \left[ \sum_{j=1}^Z \left( 1-f_j^2 - \sum_{k\neq j} \int \psi_j^* \psi_k {\rm e}^{i \rm q\cdot r} {\rm d}{\bf r}\right) \right] = I_{\rm e} S(q,Z)\quad .$$

eq 14
$$ \sigma_{\rm coh,Rayleigh}= \pi r_{\rm e}^2 \int_{-1}^1 (1+\cos^2\theta) f^2 (q,Z) {\rm d}(\cos\theta)$$

eq 15
$$\sigma_{\rm incoh,Compton}= \pi r_{\rm e}^2 \int_{-1}^1 \left( \frac{1+\cos^2\theta + \frac{k^2(1-\cos\theta)^2}{1+k(1-\cos\theta)}} {[1+k(1-\cos\theta)]^2} \right) S(q,Z)~{\rm d}(\cos\theta) ~ , \qquad k =\frac{\hbar\omega}{mc^2} $$

eq 16
$$ \sigma_{\rm coh,BL}=\left(\frac{r_{\rm e}^2 \lambda^2}{2 N V_{\rm c}}\right) \sum_H \left[\left(\frac{1+\cos^2\theta}{2}\right) md | F |^2 \right]_H\quad .$$

eq 17
$$\sigma_{\rm coh,TDS} = \left(\frac{r_{\rm e}^2 \lambda^2}{2 N V_{\rm c}}\right) \sum_H \left[\left(\frac{1+\cos^2\theta}{2}\right) md | F |^2 \{1-{\rm e}^{-2M}\} \right]_H\quad . $$

eq 18
$$\sigma_{\rm coh,TDS} = \pi r_{\rm e}^2 \int_{-1}^1 (1+\cos^2\theta) f^2(q,Z) \{1-{\rm e}^{-2M(q)} \} {\rm d}(\cos\theta) \quad . $$

eq 19
$$[\mu/\rho]_{\rm tot}=[\mu/\rho]_{\rm PE}+[\sigma/\rho]_{\rm coh} +[\sigma/\rho]_{\rm incoh} $$

eq 20
$$ f^{\rm B}(q,Z) = \frac{2me}{\hbar^2} \int_0^\infty ~ \frac{\varphi(r)\sin(qr)r^2 {\rm d}r}{qr} \quad . $$

eq 21
$$ f^{\rm B}(q,Z) = \frac{me^2}{2\pi\hbar^2 \varepsilon_0} \left\{ \frac{Z-f(q,Z)}{q^2} \right\}\quad .$$


Table of Contents - 2000 Back to Main Page