Watson's Determinable Parameters |
Present Value a [MHz] |
Cook [MHz] |
Ref. |
---|---|---|---|
A″ | 95 189.827(78) | 65010 | |
B″ | 11 844.074(9) | ||
C″ | 10 508.393(8) | ||
τ1 | -0.095 170(2681) | ||
τ2 | -0.060 646(411) | ||
τ3 b | 6.93(2) | ||
τaaaa | -15.771(49) | -15.586 926 | |
τbbbb | -0.100 443(258) | -0.099 630 | |
τcccc | -0.056 918(201) | -0.056 554 | |
HJ | |||
HJK | |||
HKJ | |||
HK | |||
hJ c | |||
hJK | |||
hK | |||
Std. dev. | 0.244 | ||
No. lines fit | 90 | ||
Derived Parameters (assuming planarity conditions) |
|||
A′ | 95 189.790(78) | 95 189.77 | |
B′ | 11 844.137(8) | 11 844.12 | |
C′ | 10 508.320(8) | 10 508.31 | |
τ′bbcc | -0.074 37(24) | -0.073 67 | |
τ′ccaa | 0.1266(33) | 0.1402 | |
τ′aabb | -0.1474(33) | ||
τaabb(1) | 0.4087(40) | 0.418 629 | |
τaabb(2) | 0.4258(69) | ||
τaabb(3) | 0.4258(69) | ||
τabab(1) | -0.2780(34) | 0.289 581 | |
τabab(2) | -0.2935(61) | ||
τabab(3) | -0.2952(69) | ||
Δτ |
a The uncertainties quoted are one standared deviation as estimated by the least squares fit. The number of significant figures quoted are necessary to reproduce the calculated transition frequencies within their standard deviations.b Strictly speaking, τ3 is not a determinable parameter, but is calculated from τ1, τ2, τaaaa, and τbbbb using the planarity conditions.
c Watson uses 2hJ for this parameter.
Parameters | 19F14N16O | 19F14N16O | 19F15N16O | Ref. |
---|---|---|---|---|
A | 95 189.67(81) | 92 667.47(170) | 90 828.51(170) | 69026 a |
B | 11 844.065(74) | 11 253.92(11) | 11 825.33(11) | |
C | 10 508.259(79) | 10 012.07(15) | 10 437.62(15) | |
χaa | 1.69(5) | |||
χbb | -4.83(5) | |||
χcc | 3.14(5) | |||
µa [D] |
1.70 b |
|||
µb [D] |
0.62 b |
a The values in the table are taken from this reference unless otherwise indicated. |