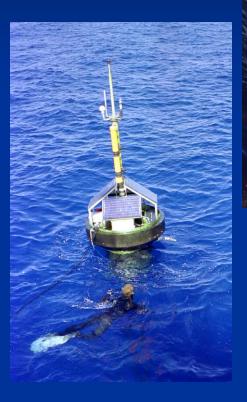
Multi-input Fiber Optic Coupled Spectroradiometer and Applications in Ocean Color Measurement 19 September 2011

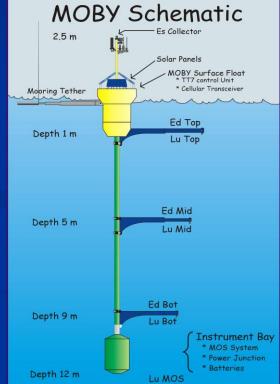
Mark Yarbrough

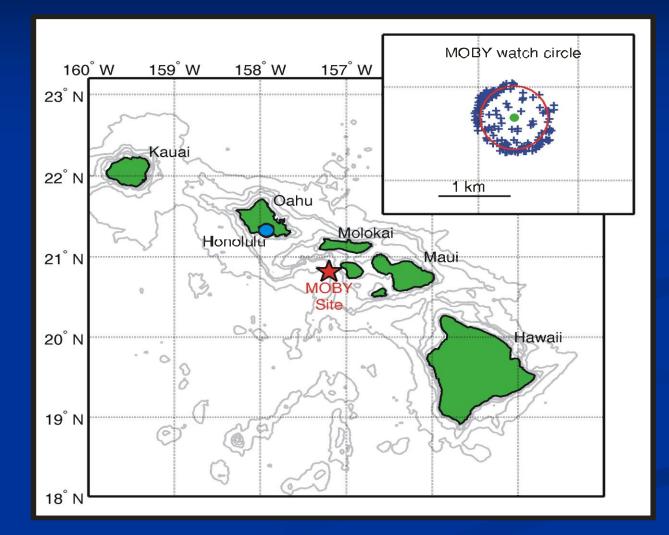
Moss Landing Marine Laboratories MOBY Project, Honolulu, Hawaii

This work funded by NOAA grant to SJSU-RF, Award #NA08NES4400014 MIFS Project funded by NIST Co-operative Agreement with SJSU-F, Award #70NANB8H8113 MOBY Operations funded under contract to University of Miami via NOAA award to CIMAS Cooperative Institute, KenVoss, PI.

MOBY Team


MLML: Mark Yarbrough, Sandy Yarbrough, Michael Feinholz, Stephanie Flora, Terrence Houlihan, Darryl Peters and Thomas Swenarton MIAMI: Ken Voss, MOBY Principal Investigator NIST: Carol Johnson, Steve Brown, Keith Lykke, Al Parr, Dennis Clark, Eric Shirley, Yuqin Zong, Bob Saunders and David Harris NOAA: Kent Hughes, Menghua Wang and Yong Sung Kim RESONON: Micheal Kehoe, Casey Dodge CHORS (ret.): Jim Mueller




Marine Optical BouY

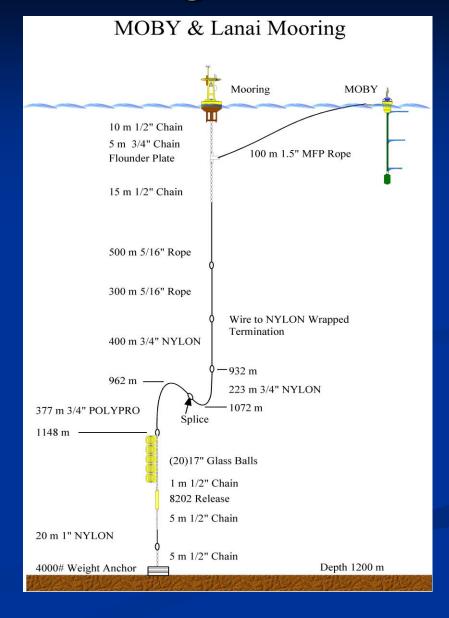
MOBY Lanai Study Area

MOBY Operations Site - Univ. Hawaii

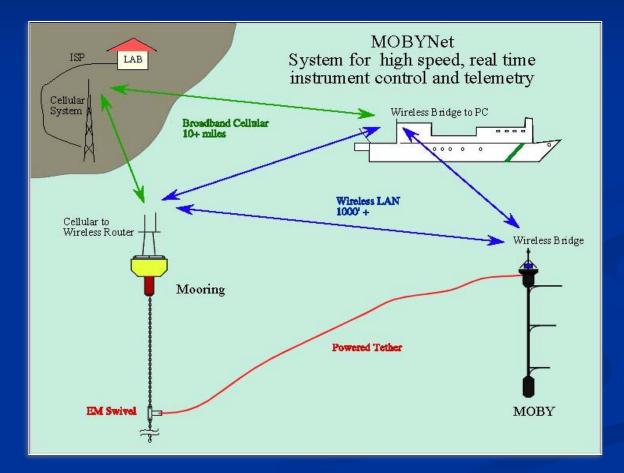
Pier Side - 30,000 sq. ft

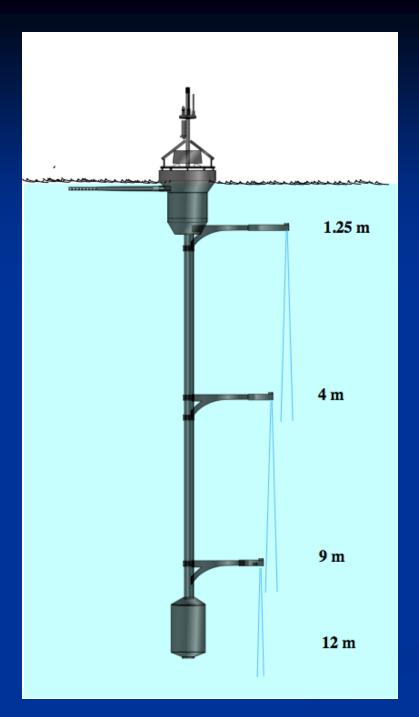
16 Portable vans/tent

offices, shops, storage, labs (calibration, optics assembly, filtration)

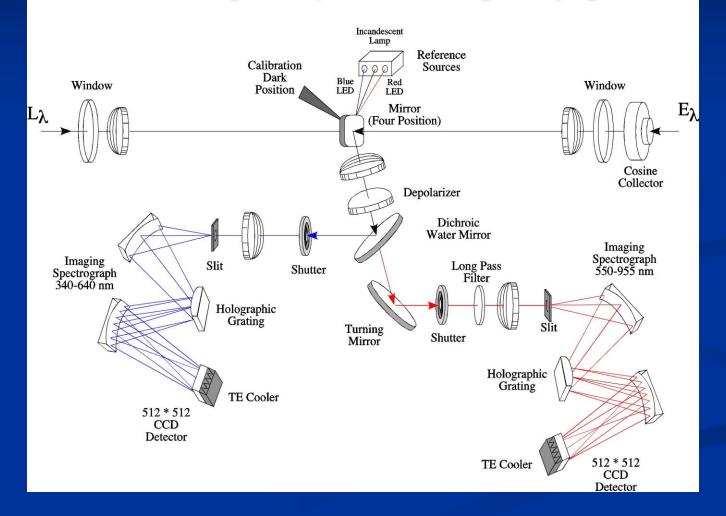

6 Shipboard Vans

3 labs - (wet, optics, data acquisition) power, storage, & office


Pier side Support - cranes, machine shop.

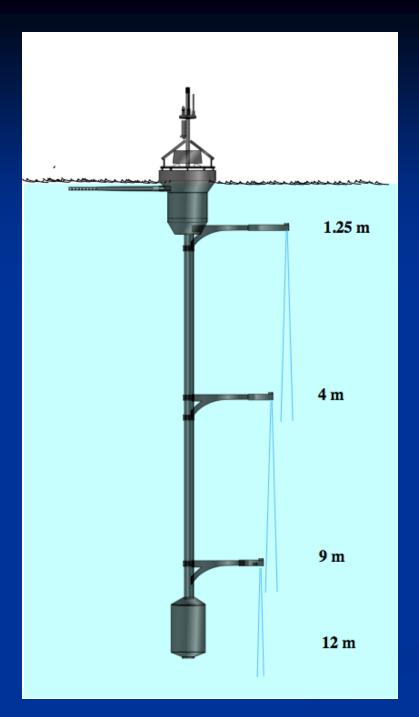

MOBY Lanai Mooring

Communications System Design: MOBYNet


MOBY

Satellite Vicarious Calibration Instrument

Primary product, L_w
Es
Lu,Ed at 3 depths
MOS radiometer
Multiplexed fiber optic inputs
Sequential Sampling


MOS Optical System

Marine Optical System - Dual Spectrographs

MOS Spectroradiometer and Fiber Optic Multiplexer

MOBY

Satellite Vicarious Calibration Instrument

Primary product, L_w
Es
Lu,Ed at 3 depths
MOS radiometer
Multiplexed fiber optic inputs
Sequential Sampling

MOBY Calibrations

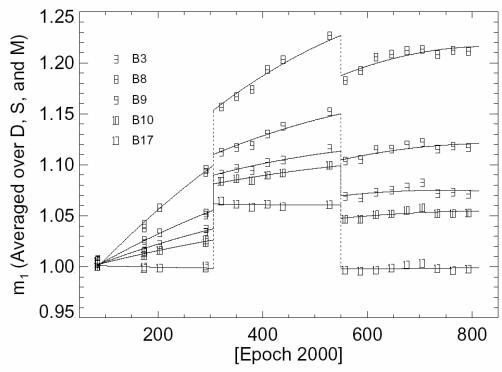
- Pre- and Post- deployment calibrations every 4 months
- NIST calibrated standard lamps and spheres
- MOS spectrograph and each collector input stray light characterized on SIRCUS
- NIST validation program at Honolulu site
- Results in SI traceable measurements
- In situ cleaning and monitoring

Data uncertainty without MOBY

Median Percent Differences (MPD) with and without MOBY Calibration

Table 4. Validation of Vicarious Calibration Against Deep-Water In Situ Measurements				
	Ratio^a	MPD^{lpha}	r^2	\mathbf{N}^b
$L_{wn}(412)$	1.002	11.8	0.930	188
$L_{wn}(443)$	0.950	15.5	0.873	318
$L_{wn}(490)$	0.942	12.2	0.817	318
$L_{wn}(510)$	0.957	10.6	0.579	164
$L_{wn}(555)$	0.968	14.8	0.827	318
$L_{wn}(670)$	1.347	64.7	0.595	306
C_{α}	0.994	26.1	0.875	149

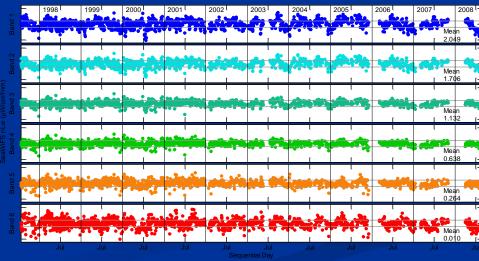
Table 5.	le 5. Sensitivity of Deep-Water Validation to No Vicarious Calibration				
	$ar{g}(\lambda)$	Ratio ^a	MPD^{α}	r^2	N^b
$L_{wn}(412)$	1.0000	0.245	80.0	0.861	54
$L_{wn}(443)$	1.0000	0.447	55.4	0.799	111
$L_{wn}(490)$	1.0000	0.760	25.7	0.772	111
$L_{wn}(510)$	1.0000	0.753	24.7	0.665	45


From: Franz et al 2007

MODIS/Terra change to the calibration coefficients

•"A-side" or "B-side" change to the calibration coefficients for the ocean color bands

•Increased precision benefit this program.


•Type A environmental uncertainties need to be reduced, to well below the 0.5 % level

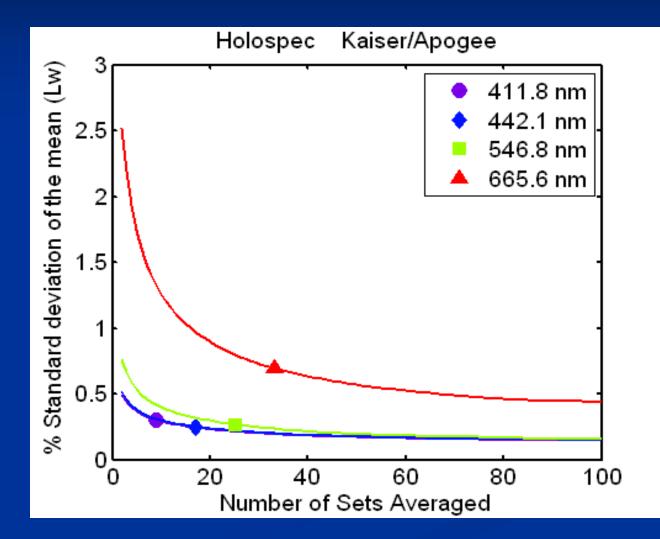
Marine Optical System & Data Stream

In MOS, light is input sequentially into the dual spectrographs using optical fibers and a rotating mirror assembly (in place of the cosine collector). The full slit is imaged onto CCD detectors. On a typical day, it took 27 min to acquire a full data set, with integration times of between 1 and 30 sec (Es vs Lu collectors) for the CCDs. A dark scan, three light scans, and a dark scan are taken at each channel.

In-Water Diver Cals

Aging Instrumentation

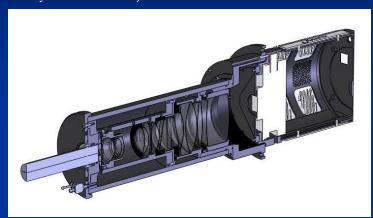
MOS radiometers are over 15 years old



MOBY Uncertainty (k=1) in Lu(1m, λ)

MODIS-Terra						
Uncertainty Component [%]	8	9	10	11	12	13
	411.8	442.1	486.9	529.7	546.8	665.6
Radiometric Calibration Source						
Spectral Radiance (NIST)	0.65	0.6	0.53	0.47	0.45	0.35
Stability	0.41	0.46	0.51	0.53	0.53	0.48
Transfer to MOBY						
Interpolation to MOBY wavelengths	0.2	0.15	0.03	0.03	0.03	0.03
Reproducibility	0.37	0.39	0.42	0.44	0.42	0.3
Wavelength accuracy	0.29	0.08	0.04	0.03	0.01	0.04
Stray light	0.75	0.3	0.1	0.15	0.3	0.3
Temperature	0.25	0.25	0.25	0.25	0.25	0.25
MOBY stability during deployment						
System response	1.59	1.3	1.19	1.11	1.08	0.92
In-water internal calibrations	0.43	0.42	0.44	0.46	0.51	0.55
Wavelength stability	0.132	0.138	1.122	0.816	1.368	0.65
Environmental						
Type A (good scans & good days)	0.8	0.83	0.87	1.02	0.64	1.31
Temporal overlap	0.3	0.3	0.3	0.3	0.3	0.3
In-water bio-fouling	1	1	1	1	1	1
Self-shading	1	1	1.2	1.75	2.5	12
Self-shading (upon correction)**	0.2	0.2	0.24	0.35	0.5	2.4
Combined Standard Uncertainty	2.63	2.36	2.64	2.84	3.44	12.21
Combined Standard Uncertainty**	2.44	2.15	2.36	2.27	2.42	3.28

#1-10 T = Cals

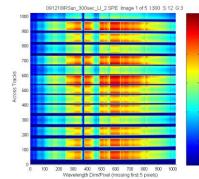

Increased sample rate

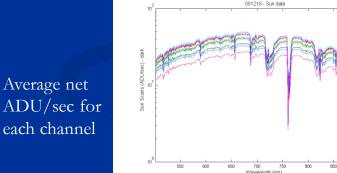
New Sensor – Simultaneous Acquisition

Princeton Instrument

Romack fiber optic input (currently 14 channels)

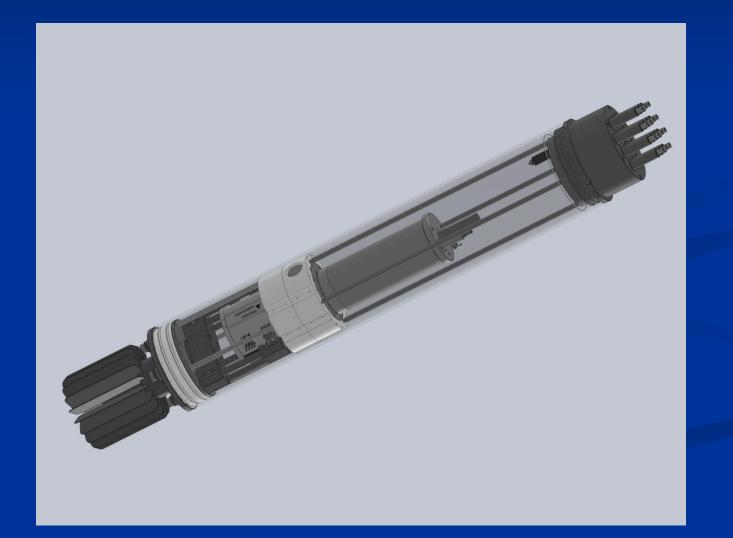
Resonon Volume Phase Holographic (VPH) in line spectrograph


Blue In Line Spectrograph (BILS)


Red In Line Spectrograph (RILS)

The inputs to the optical fibers are at the desired locations. The fiber outputs are aligned vertically at the entrance slit. The prism-grating-prism in-line optical system (Resonon, Inc.) images the different input channels at the same time on the CCD camera), spaced along the slit direction.

RILS image of diffuse solar flux

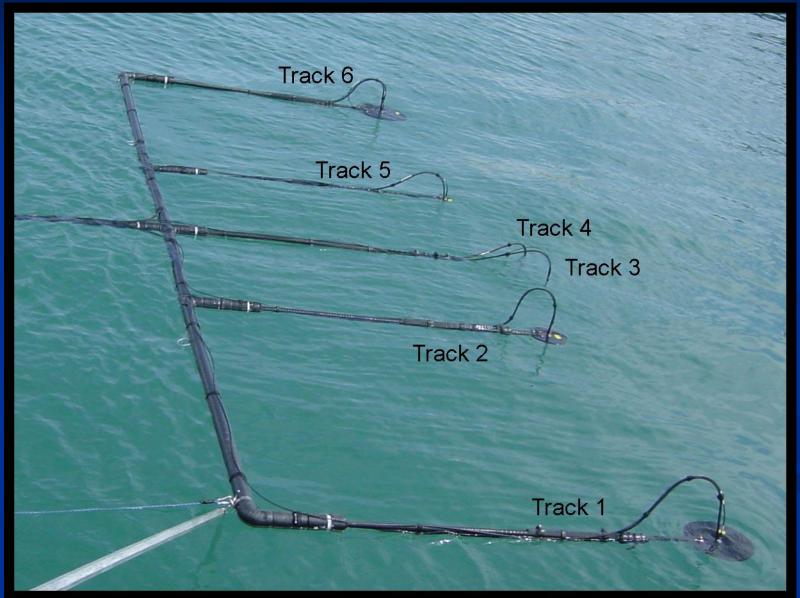


In-Line Spectrograph Parameters from Optical Design

Parameter	Blue	Red	
Size, cm	13.7 x 41.7	13.7 x 43.2	
Spectral coverage, nm	370 - 720	500 - 900	
Spectral resolution, nm	0.34	0.39	
Image at focal plane, mm	13 x 13	13 x 13	
Slit dimensions, mm	13 x 0.025	13 x 0.025	
Thermal effect, pixel/deg C	< 0.05 pixel	< 0.05 pixel	
MTF @ 38 line pr / mm	76 at 545 nm	61 at 700 nm	
Throughput, %	74.8 at 430 nm	72.5 at 700 nm	
Ghosting / Stray Light	< 0.5% at 420 nm	< 0.6% at 520 nm	

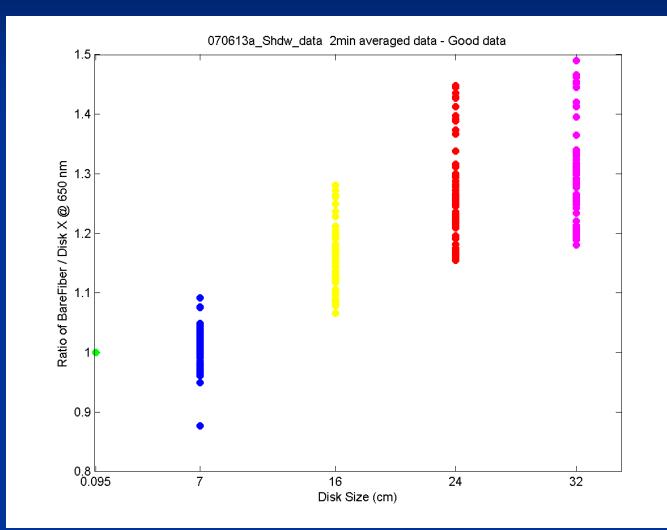
"Report on Blue and Red Imaging Spectrometers for MOBY," Michael Kehoe and Casey Dodge, Resonon, Inc.

Multi-input Fiber Optic Spectroradiometer


Multi-input Fiber Optic Spectroradiometer

Unique Benefits of MOBY-C

Supports ViCal of multiple satellites
High data rate provides less data exclusion
Geometry minimizes self shading errors
Methodology for optimum Lw measurements
Configurable for a range of OC applications
One instrument provides up to 16 inputs


Self-shading Experiment

Self-shading Experiment

Self-shading Experiment

