

Characterization of the Airborne Compact Atmospheric Mapper During the Global Hawk Pacific Campaign

Dr. Scott Janz¹ (PI)

Dr. Xiong Lui³

Matthew Kowalewski^{1,2}

¹NASA/GSFC Code 613.3

²Universities Space Research Assoc.

³Harvard CfA

- Science Objectives
- Instrument Overview
- Characterization
 - Linearity
 - Stray light
 - Radiometry
- Conclusions

 Boundary layer NO₂ plume spatial scaling – OMI sub-pixel scaling errors and model studies for next-generation Geostationary sensors.

- NO₂ diurnal variability – model improvement for next-generation Geostationary sensors.

- Aerosol loading and distribution.
- Test sensitivity of Ocean Color spectrograph.
- Test radiometric calibration trending precision.

NASA

ACAM Integration Requirements

Instrument specifications: Mechanical and Electrical

Size: 20"x16"x11"

Weight: 55 lbs

Power: 420 Watts DC (approx max)

Inlet probe: NA

Exhaust port: NA

View ports/windows: (2) 4.9" Fused Silica, Zenith viewing fiber

Hazards (Lasers, Pressure vessels, Compressed Gases, Chemicals, Motors/Pumps, Batteries, etc.): none

> Instrument Requirements: Control and Communication

Control Switches: (2) instrument power,

survival heaters

Communications Bandwidth:

Required: Housekeeping 1Hz @ 750 bps

Desired : Video @ 1Mbs, Full frame ~70kbs,

QuickLook sub-sample spectral ROI's

Nav / Time inputs: Timesync & Nav via ethernet

Instrument Photo:

Instrument Modifications needed:

Hardware

- Zenith sky fiber feed through port.
- Power and data connectors.

Software

- CMDH via ethernet
- -Real-time science retrievals.

ACAM Optical Description

Two fiber coupled miniature spectrographs (nadir and zenith viewing)

- Air Quality (AQ) 304:520nm @ 0.8nm resolution (NO2, O3, UV absorbing aerosols, HCHO)
- Ocean Color (OC) 460:900nm @ 1.6nm resolution, GG475 long pass filter

(Aerosols, Ocean Color, water vapor)

HD video camera (2592 x 1936 pixels) – 3 pixel FWHM

Optical bench and support electronics contained in pressure and temperature controlled enclosure 55 lbs total weight

250 watts avg. power

Fiber Optics

Nadir view

- Common fiber optic feed from collimator which images IFOV 800m x 800m (AQ), 375m x 800m (OC) from an 18 km altitude.
- IFOV scanned via a small mirror mounted on a galvanometer up to angles of $\pm 40^{\circ}$.
- Fiber optically matched to spectrometers (F/4).

. Zenith view

- 30' 19x220um bundle with collimator mounted on vertical fin feeds vacuum compatible bulkhead feed-through.
- Fiber coupler and index matching optical couplant used to decrease transmission loss at fiber connection.
- Feed-through extends inside housing to illuminate scan mirror.

Global Hawk – ACAM Coordinate Frames

ACAM Operations

Characterization

- Linearity
- Stray Light
 - Laser slit function
 - Broad band
- Radiometry
 - Scan angle dependence
 - Stability

Linearity

- Test Description
 - Field calibration source at constant output.
 - Multiple integration times to probe dynamic range.
 - Repeated integration times to monitor source changes.
- Data analysis
 - Each pixel's bias corrected signal linearly fit as function of integration time.
 - Fit residuals characterized as a function of signal level to determine non-linearity.

Linearity – AQ Results

Linearity – OC Results

 Previous missions showed significant wavelength dependent sensitivity changes.

Achieving sub-5% radiance transfers with satellite sensors requires in-field calibration monitoring.

Calibration test plan

- Pre- and Post-Mission laboratory tests include:
 - Calibration transfer of lab and field sphere sources.
 - ACAM calibration using both sources.
- Field calibration before and/or after each flight.

- Laboratory integrating sphere calibrated against multiple
 NIST irradiance standards.
 Description:
 - 20" internal diameter
 - 8" exit port
 - PTFE linear
 - 2 or 4 (configurable), 150W
 - QTH internal bulbs
 - Single power supply monitored by shunt & meter

Transfer uncertainty 1.5% [k=1] at 300nm

- Radiometric scan angle
 dependence measured by
 rotating ACAM about scan
 mirror while viewing sphere.
- Required for determining aerosol, ocean color, and radiance transfer comparisons.
- No internal scattering sources found.

Field Calibration

Source description:

- 6" internal diameter PTFE liner
- Single 150W QTH lamp
- Micrometer driven attenuator

 Single power supply, current monitored with shunt and meter.

 Calibration performed prior to or after every flight.

 Spectrometers cooled to flight operating temperatures to ~1C.

Radiometric Stability

- 7% UV throughput change that started prior to first flight on April 1.
- Counter-intuitive spectral dependence for source or instrument degradation.
- Possible alignment change or contaminant on focus mirror or CCD window.
- Spectrometer temperatures changes caused AQ spectral features and OC etaloning features.

Radiometric Source Stability

- Calibration sources fairly stable, with minor changes <350nm.
- Instrument changes not caused by source changes.

Spectral Stability

- Solar line fits to in-flight data used to characterize wavelength temperature dependence.
- Observed shift in AQ calibration trend (~1pxl) consistent with 1C temperature stability performance given spectrometer's 0.1nm/pxl sampling.

Slit Function

- Test Description

- Discrete laser sources with
 line widths << spectral bandpass.
- Lasers illuminated 6" integrating sphere which illuminated ACAM nadir scan mirror.
- Multiple integration times to enhance characterization of wings.

- Data analysis

- Bias correction & dark current corrections.
- Integration time normalization.
- Multiple integration times stitched together to create slit function.

- Laser wavelength range limited slit function characterization to AQ spectrometer.
- Wavelength spacing too large for matrix correction. (Zong et al,. "Simple stray light correction method for array spectrometers", Applied Optics 2006).
- Spectral features seen in all slit functions (~5x10⁻⁵).
- No sphere liner fluorescence observed.

Slit Function – Results

14um pixel pitch

Slit Function - Results

Broadband Stray Light

- Test Description

- Field calibration source illuminates nadir viewing scan mirror.
- Multiple cut-on filters used to isolate spectral source of scatter.
 - 350nm, 475nm, 495nm
 - All have blocking efficiencies better than 10⁻⁵
- Data analysis
 - Bias correction & dark current corrections.
 - Integration time normalization.

Broadband Stray Light

- Different filters yield similar scatter levels below cut-on wavelength.
- More recent tests using OG590 cut-on filter yields similar results.
- Nearly 30% of observed calibration signal at 300nm due to scatter.

Scattering Sources

Broadband Correction

ACAM Terrestrial Sources

Pilewskie et al,, "CLARREO Visible and Near-Infrared Studies", LASP U. Colorado. clarreo.larc.nasa.gov/docs/III.6_LASP_Solar_Studies_Oct_workshop.ppt

Conclusions

- Non-linearity characterized to within 0.5%.
- Field calibration trending precision ~2%.
 - AQ experienced time and spectrally dependent change during mission.
 - OC stable to within trending uncertainty (2%). No significant spectral dependence aside from etaloning.
 - Spectrometer temperature repeatability/stability critical to accurate trending.
- Spectrometers' slit function characterizations require higher wavelength fidelity.
- Broadband stray light indicates AQ scattering source from out from out of range wavelengths (700-1000nm).
- OC exhibits some short wavelength scatter. Requires more testing.

Thank you for your attention