Radiometric Characterization of a Hyperspectral Image Projector (HIP) Joseph Rice*, Stephen Maxwell, Howard Yoon, and Steve Brown Optical Technology Division National Institute of Standards and Technology Gaithersburg, MD 20899 USA *joe.rice@nist.g

This presentation includes contributions from many NIST and non-NIST collaborators, including:

Mike Kehoe, Casey Dodge, Casey Smith, Rand Swanson, Resonon (Design/Build of the first non-prototype HIP):

Jorge Neira, Allan Smith, David Allen, Bob Saunders Resonon (Software development, performance characterization, design applications):

James Goodman, University of Puerto Rico

Edward Livingston & Karel Zuzak, U. Texas Southwestern Medical Center

Optical Technology Division

Introduction

Motivation:

- Scene Projector validation tool, SI traceable, for <u>in-car police video</u> cameras
- Scene projector for <u>Fire-fighter Sensor Evaluation</u>
- Scene Projector performance validation artifact for <u>military hardware</u>
- Scene Projector for <u>Quantitative Optical Medical Imaging</u>
- Scene Projector for <u>Multi and Hyperspectral Imaging/Earth-remote Sensing</u>

General solution:

- > The Hyperspectral Image Projector (HIP)
 - A 2D scene projector where every pixel has a programmable spectrum

A few optical technologies introduced along the way

- Micromirror (Digital Micromirror Device DMD) arrays,
- Liquid Crystal on Silicon (LCOS) arrays,
- Supercontinuum sources

Outline

- Introduction to the concept of a Hyperspectral Image Projector (HIP)
- Show what a realized HIP looks like
- Show some example scenes
 - San Diego Naval Air Station
 - Enrique Reef in Puerto Rico
 - Medical scene of liver/bile duct
- Future Directions

Hyperspectral Image Projector (HIP)

- HIP projects 2-d hyperspectral images
 - Complex spatial scenes with use-defined spectral content
- A source analog to Hyperspectral Image Sensors

HIP Basic Concept

HIP replaces the color filter wheel in a conventional DLP projection system.

- 1. Enable user-defined eigenspectra
- 2. Change the number of different spectra from 3 to an arbitrary, user-defined, number

1 Chip DLP[™] Projection

Optical Technology Division

Digital Micromirror Devices (DMD's)

- An array of (Micro-Electro-Mechanical System) MEMS micromirror elements
- Developed by Texas Instruments
 - 1024 x 768 elements, +/- 12 degree tilt angle
 - Aluminum mirrors
 - 13.68 micron pitch
 - < 24 microseconds mechanical switching time
- Two nice features
 - Mirrors don't fail
 - Control software has been developed

Two Pixels from the DMD Mirror Array:

Liquid crystal technology is also being investigated for the HIP by Boulder Nonlinear Systems, Inc. under SBIR programs

Optical Technology Division

Overview of the NIST HIP

Optical Technology Division

Principle of the Spectrally Programmable Source Double subtractive spectrometer

Optical Technology Division

How the DMD is used in the Spectral Engine:

Monochromator Mode

Broad-band Source Mode

Optical Technology Division

Spectral Matching Examples

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 10

Optical Technology Division

Spectral Matching Examples:

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 11

Source: Laser-pumped Photonic Crystal Fiber

- Utilizes non-linear effects in a photonic crystal optical fiber to greatly broaden the spectrum of a 1064 nm pump laser.
- Broadband light is generated in a single-mode (5 um core diameter) photonic crystal (holey) optical fiber
 - No etendue issues as with lamps or blackbodies.
 - Ideally suited for coupling to a spectral engine.
 - High radiance, not high power
- High power and high spectral resolution:
 - 3mW/nm spectral power density from 450 nm to 1700 nm
- Commercially available.

Optical Technology Division

Supercontinuum Source Stability

Short term: 60 seconds

Longer term: 60 minutes

Optical Technology Division Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 13

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 14

HIP VNIR-SWIR Spectral Engine

Optical Technology Division

VNIR-SWIR Spatial Engine Optical Design

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 16

VNIR-SWIR Spatial Engine Mechanical Design

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 17

NIST/Resonon VNIR-SWIR HIP Prototype System

Optical Technology Division

NIST/Resonon VNIR-SWIR HIP Prototype System

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 19

Reference Instrument

PIXIS camera with a liquid crystal tunable filter

Optical Technology Division Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 20

Hyperspectral Image Data Cube

AVIRIS Image Cube of the San Diego Naval Air Station

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 21

Compressive Projection is Used to Achieve Higher Brightness

Software such as ENVI/SMACC is used to find the Eigenspectra and their Abundances

J. Gruninger, A. J. Ratkowski, and M. L. Hoke, "The sequential maximum angle convex cone (SMACC) endmember model," *Proc. SPIE* **5425**, 1-14 (2004).

Example: AVIRIS Image Cube of San Diego Naval Air Station

Then we need only project N = 6 broadband spectra instead of M = 30+ monochromatic spectra.

Optical Technology Division

Enrique Reef, Puerto Rico James Goodman, University of Puerto Rico David Allen, NIST

Optical Technology Division Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 23

Enrique Reef Decomposition

Eigenspectra

Abundance Images

Optical Technology Division

Original Image

Re-created Image

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 25

Gall Bladder, Liver, Skin Image Drs. Edward Livingston & Karel Zuzak University of Texas Southwestern Medical Center Maritoni Litorja, NIST

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 26

Image Decomposition Into Endmember Spectra and Abundance Images

Original RGB image

Optical Technology Division

Hyperspectral Image Projector (HIP) 19Sept2011 NewRad Page 27

Image Decomposition - Visible Classification according to components spectra

Gall bladder

Cystic duct

Liver

Original RGB image

Optical Technology Division

Image Decomposition - Near IR Classification according to components spectra

skin

liver

Original NIR image at 800 nm

Optical Technology Division

Future Directions

- Working with NOAA exploring Liquid Crystal on silicon (LCOS) array-based spectral light engines
- Working with NASA to include polarization
- Extending range into UV and further into the IR
 - Currently looking at the 3 to 5 um range
 - Plans to consider extending capabilities to the 8μm to 12 μm range

Summary

Hyperspectral Image Projector (HIP)

Being developed as a scene projector for testing spectral/imaging sensors

- Projects a 2D image with programmable spectra at each pixel
- Unique applications in testing sensors with realistic spectra and scenes
- Using a 4 W supercontinuum source, the HIP is capable of 2 nm spectral resolution over the VNIR and 5 nm over the SWIR, providing spectral, spatial, and radiometric fidelity for simulating solar-illuminated Earth scenes.
- Used for testing Laboratory for Atmospheric and Space Physics (LASP) HSI prototype in May 2011
- Currently being used for testing NASA Ocean Radiometer for Carbon Assessment (ORCA) prototype

For more information: Contact Joe Rice (joe.rice@nist.gov)

This work was funded in part by the U.S. Department of Defense Test Resource Management Center (TRMC) Test and Evaluation / Science and Technology (T&E/S&T) Multi-Spectral Test (MST) Program, by the NIST Office of Law Enforcement Standards, and by the NIST Optical Medical Imaging IMS project

Optical Technology Division