

GEO, CEOS and the NMIs

Dr Nigel Fox

Chair IVOS sub group of CEOS WGCV 19 Sep 2011

National Measurement System

"Community" requirement

- The Group on Earth Observations (GEO)'s (founded 2002) Global Earth Observation System of Systems (GEOSS) <u>must</u> deliver comprehensive "knowledge / information products" worldwide and in a timely manner to meet the needs of its nine "societal benefit areas".
- This will be achieved through the synergistic use and combination of data derived from a variety of sources (satellite, airborne and *in-situ*) through the coordinated resources and efforts of the GEO members.

• Achieving this vision (2015) requires the establishment of an operational framework to facilitate interoperability and harmonisation.

CEOS Organization

Strategy development: community engagement

Strategy development led by small CEOS team through two community workshops, CEOS sub-groups and ad-hoc meetings

"GEO/CEOS workshop on quality assurance of calibration and validation processes":

"Guiding principles" (Geneva Oct 07)

QA4EO

"Establishing an operational framework" (Washington May 08)

"Facilitating implementation" (*Antalya Oct 09*)

Inc WMO +

CEOS endorsed – Nov 08

Now evolving to meet all EO needs of GEO inc in-situ

A QUALITY ASSURANCE FRAMEWORK FOR EARTH OBSERVATION

IVOS MISSION statement

Mission

"To ensure high quality calibration and validation of infrared and visible optical data from Earth observation satellites and validation of higher level products"

IVOS Terms of Reference

- 1. Promote international and national collaboration in the calibration and validation of all IVOS member sensors.
- 2. Address all sensors (ground based, airborne, and satellite) for which there is a direct link to the calibration and validation of satellite sensors;
- 3. Identify and agree on calibration and validation requirements and standard specifications for IVOS members;
- 4. Identify test sites and encourage continuing observations and inter-comparison of data from these sites;
- 5. Encourage the preservation, unencumbered and timely release of data relating to calibration and validation activities including details of pre-launch and in flight parameters.

6. In the context of calibration and validation encourage the full consideration of "traceability" in all activities involved in the end-to-end development of an EO product including appropriate models and algorithms.

Operational framework: Principles and scope (space example)

All activities which contribute to the delivery of an end product derived from an input measurand

Pre-Flight

- Requirement/Design Specification
- Instrument build: characterisation/calibration
- Data processing: algorithms, ref/support data,

Post-Launch

- Instrument performance
- Output data quality characteristics:
 - accuracy
 - equivalence to others (sensors/in-sit
- Processing high level products
- Data distribution/archive ...
- Collection Processing Validation Deliver

http:QA4EO.org

Initiated (2008) by "space-community" on behalf of GEO to facilitate harmonisation and interoperability – Quality does not have to be "best" simply quantified

QA4EO Principle

Data and derived products shall have associated with them a fully traceable indicator of their quality

Data Quality guidelines: QA4EO-QAEO-GEN-DQK-....National Physical Laboratory

...001: A guide to establishing a Quality Indicator on a satellite sensor derived data product

...002 A guide to content of a documentary procedure to meet the Quality Assurance requirements of GEO largely based on formal ISO Quality management ISO 17025

...003 A guide to "reference standards" in support of Quality Assurance requirements of QA4EO

...004 A guide to comparisons – organisation, operation and analysis to establish measurement equivalence to underpin the Quality Assurance requirements of QA4EO Based on CIPM MRA (CCPR guidelines) http://www.bipm.org

...005 A guide to establishing validated software, algorithms and models to underpin the Quality Assurance requirements of QA4EO

...006 A guide to expression of uncertainty of measurements GUM (ISO guide to uncertainty of measurement)

...007 A guide to establishing quantitative evidence of traceability to underpin the Quality Assurance requirements of QA4EO

CEOS WGCV:IVOS "instrumented sites" (LandNet)

Reference stds for radiometric gain (land imagers) Ideally Need Ten!

- Spatially uniform, bright, large (pixels from 10's to 100's m)
- Standardised procedures to aid characterisation (and for new sites)
- Comparisons of "field measurement" instruments & techniques to ensure consistency and "traceability"

CEOS WGCV IVOS: "stability" Reference standards

Need wide range of Reference standards including National Physical Laboratory "intrinsic standards" (methods) & transient stds

Radiation Transfer model intercomparison (RAMI) of JRC

"test data sets" to evaluate models, algorithms and software

Rayleigh Calibration Sites – Choice of oligotrophic areas with 2 years of SeaWiFS data made in 2001 with ACRI and LOV (CLIMZOO zones)

Ocean buoys & ships

CEOS International comparisons to **NPL** assess biases and develop "best practise" National Physical Laboratory

see: http://calvalportal.ceos.org

Sea surface temperature (Lab and Oceans)

Land surface reflectance comparisons including BRDF with GRASS (hot and cold) also with sats

Optical uncertainty requirements (GCOS)

for decadal climate change UN Global Climate Observing System

Objectives for SI traceability	Climate Requirement	Pre- flight	ln- flight	Terrestrial	Primary
Solar Irradiance	0.01%	0.2%	?	0.2%	0.01%
Spectral radiance (clouds, albedo)	0.3%	2% - 5%	?	~1%	<0.05%
Water-leaving radiance (Ocean Colour)	1%	5%	~5%	~1%	<0.05%

"Strategy!": Need to monitor change – not necessarily absolute values

- Sensors only require "sensitivity" and stability (or means to check) and sufficient overlap with another sensor to avoid data gap

High risk: - <u>Guaranteed</u> Data continuity - high cost - "data-gaps" likely

- small drifts undetected potential bias build-up with time
- discourages innovation

- sensitive to natural fluctuations (particularly during "overlaps")

SI Traceability– Flexible observing, innovation, coherence between(maintained in operation)methods (traceability routes) and observing systems

Towards a: European Metrology Centre for Earth **National** Observation and Climate (EMCEOC) http://EMRP.org

Towards a "European Metrology Centre for NPL Earth Observation and Climate" (EMCEOC) National Physical Laboratory

- EU funded Project: ~40 MY over 3 yrs Vision to be a "one-stop-shop" for EO metrology in Europe Starts ~ Oct 2011
- Case study projects: largely optical illustrate range and scope
- Pre-flight laboratory-based calibration standards and methodologies in vacuum spectral radiance traceability, Stray light, linearity, microwave sounders
- On-board calibration standards

Flat plate IR black bodies for limb sounders (accuracy ~0.1 K)

- Recovering/establishing in-flight traceability through reference standard measurements and test-sites
 Ocean Colour Cal/Val (target 1%), RT codes, field spectroscopy (leaf level) autonomous self-calibrating networks
- Prototype in-flight SI traceability methodology TRUTHS mission
- Supporting international QA and providing training
 - e.g. uncertainty/traceability of forest carbon

TRUTHS: Traceable Radiometry Underpinning Terrestrial- and Helio- Studies

A Benchmark Mission for Climate Change and GMES

Climate studies require:

- Global coverage
 - observations (insensitive to time/location/scale)
- Decadal time scales
- Uncertainties close to primary SI standards/realisations

EO "customers" (via GMES, GEOSS + £services) seek:

- Timely, reliable & "fit-forpurpose" knowledge from:
 - integrated sources
 - international harmonised
 - affordable cost
 - (some) at climate quality
- Must have quality system
 - traceable uncertainty
 - e.g. QA4EO

Operational calibration service through "CEOS standard" sites/methodologies

COVI

and Ocean can be used as standards to cross-compare between sensors and to ground data providing each site is compared to each other

Conclusion

- Earth observation (climate change) provides some of the biggest challenges to optical radiometry
- Close partnership between NMIs and EO expert community essential for long term success