On-orbit Absolute Blackbody Emissivity Determination Using the Heated Halo Method

Jonathan Gero, Joe Taylor, Fred Best, Ray Garcia, Hank Revercomb, Bob Knuteson, Dave Tobin, Doug Adler, Nick Ciganovich and Steve Dutcher

University of Wisconsin—Madison
Space Science and Engineering Center

NEWRAD 2011
Maui, Hawaii
September 19, 2011
Overview

• Introduction
 – Traceability of infrared blackbody radiance
 – Paint degradation in space
 – On-orbit Absolute Radiance Standard

• Heated Halo Emissivity Monitor
 – Test configuration
 – Emissivity results and uncertainty
 – Comparison between S-HIS, ARI and NIST measurements

• Summary
Traceable Blackbody Radiance

- Planck function:
 \[B_\nu(T) = \frac{2hc^2\nu^3}{\exp(h\nu c / k_B T) - 1} \]

- Blackbody radiance:
 \[I_{\nu, Blackbody}(\epsilon_\nu, T) = \epsilon_\nu \cdot B(T) \]
Traceable Blackbody Radiance

- Planck function:
 \[B_\nu(T) = \frac{2hc^2\nu^3}{\exp(h\nu c / k_BT) - 1} \]

- Blackbody radiance:
 \[I_{\nu,\text{Blackbody}}(\varepsilon_\nu, T) = \varepsilon_\nu \cdot B(T) \]

- Both temperature and emissivity of a blackbody must be known — on-orbit — throughout the lifetime of the instrument
Traceable Measurements for Climate

- Goody et al 1998 BAMS
- Anderson et al 2004 JQSRT
- Revercomb et al 2005 OSA
- Dykema and Anderson 2006 Metrologia
- National Research Council 2007 Decadal Survey
- Best et al 2007 CALCON
- Ohring 2008 ASIC3
- Leroy et al 2008 J. Climate
Absolute Radiance Interferometer
On-orbit Absolute Radiance Standard

- Cold Plate
- On-orbit Absolute Radiance Standard
- Conductive Bridge
- Outer enclosure
- Phase change cells (Ga, H$_2$O, Hg)
- Temperature controlled shroud
- Thermal isolator
- Thermistors
- Temperature controlled cavity
- Heated halo
Heritage for the On-orbit Absolute Radiance Standard

- Krutikov et al 2006 *Metrologia*
- Best et al 2008 *SPIE*
- Gero et al 2011 *Metrologia (submitted)*
NEWRAD 2011: Absolute Radiance Interferometer

- **Joe Taylor**, The University of Wisconsin Space Science and Engineering Center Absolute Radiance Interferometer
- **Fred Best**, On-orbit absolute radiance standard for future IR remote sensing instruments
- **John Dykema**, Infrared laser-based reflectance measurements for blackbody cavity emissivity determination
Paint Degradation in Space

Long Duration Exposure Facility

• Study effects of LEO exposure on various materials
• In LEO 1984-1990 (5.7 years)
• Samples of Z306 on Aluminum

Results

• Evidence of oxidation, erosion, removal of resins, appearance of silicate residues, cracking
• Quantitative changes in optical properties
Heated Halo Concept

Heated Halo
AERI BB Housing
AERI BB Cavity
Radiation Shield
Sensor
Heated Halo Concept

\[R_{\text{obs}} = \varepsilon \cdot B(T_{\text{bb}}) + (1 - \varepsilon) \cdot [F \cdot B(T_{\text{halo}}) + (1 - F) \cdot B(T_{\text{room}})] \]

Direct radiance from BB
Reflected radiance from BB
Emissivity Calculation

Observed radiance:

\[R_{\text{obs}} = \varepsilon \cdot B(T_{\text{bb}}) + (1 - \varepsilon) \cdot R_{\text{bg}}, \]
Emissivity Calculation

Observed radiance:

\[R_{\text{obs}} = \varepsilon \cdot B(T_{\text{bb}}) + (1 - \varepsilon) \cdot R_{\text{bg}}, \]

\[R_{\text{bg}} = [F \cdot B(T_{\text{halo}}) + (1 - F) \cdot B(T_{\text{room}})] \]
Emissivity Calculation

Observed radiance:

\[R_{\text{obs}} = \varepsilon \cdot B(T_{\text{bb}}) + (1 - \varepsilon) \cdot R_{\text{bg}}, \]

\[R_{\text{bg}} = [F \cdot B(T_{\text{halo}}) + (1 - F) \cdot B(T_{\text{room}})] \]

Emissivity/reflectivity measurement:

\[\langle 1 - \varepsilon(t) \rangle_t = \left\langle \frac{R_{\text{obs}}(t) - B[T_{\text{bb}}(t)]}{R_{\text{bg}}(t) - B[T_{\text{bb}}(t)]} \right\rangle_t \]
Heated Halo Gen. 1
Heated Halo Gen. 1 Test Configuration (S-HIS)

AERI Blackbody

Heated Halo

Scanning HIS Aircraft Instrument

MCT, InSb detectors
AERI Blackbody Emissivity (Halo 1, S-HIS)
Emissivity Uncertainty (Halo 1, S-HIS)

Type B measurement uncertainty ($k = 3$)
Heated Halo Gen. 2
Heated Halo Gen. 2 Test Configuration (ARI)
Heated Halo Gen. 2 Test Configuration (ARI)
AERI Blackbody Emissivity (Halo 2, ARI)
Emissivity Uncertainty (Halo 2, ARI)

Type B measurement uncertainty $(k = 3)$
AERI Blackbody Emissivity (Halo 1, Halo 2)
AERI Blackbody Emissivity Comparison

Comparison with NIST measurements

Continued work corroborates earlier results and helps reduce uncertainty
Next Generation Heated Halo

Gen. 1

Gen. 2

Gen. 3

TRL 4

TRL 5

TRL 6
Summary

• Spectral emissivity measurement has been demonstrated with the Heated Halo configured with both the S-HIS and the ARI, using an AERI blackbody as the target
• 0.0006 measurement uncertainty achievable across most of the thermal infrared
• Primary “lesson learned” is the importance of controlling stray light contributions
• Agreement between observations using two different instruments validates the process for emissivity measurement with the Heated Halo
On-orbit Absolute Radiance Standard

- Outer enclosure
- Phase change cells (Ga, H$_2$O, Hg)
- Temperature controlled shroud
- Conductive Bridge
- Thermal isolator
- Thermistors
- Temperature controlled cavity
- Heated halo
AERI Blackbody Emissivity Comparison

![Graph showing emissivity comparison with wavenumber in cm⁻¹ on the x-axis and emissivity on the y-axis, with different lines and markers representing various models and measurements.]