All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI)

CURRENT ACTIVITY OF RUSSIA IN MEASUREMENT ASSURANCE OF EARTH OPTICAL OBSERVATION

Federal Agency on Technical Regulating and Metrology

11th INTERNATIONAL CONFERENCE on New Developments and Applications in Optical Radiometry

19-23 September 2011

CURRENT VNIIOFI's ACTIVITIES

within Global Earth Observation System of Systems project

- 1. Establishment of high quality national measurement standard facilities for pre-flight calibration of the Earth observation instruments. VNIIOFI regularly participates in int.
- 2. Performing comparisons of national measurement standards.

VNIIOFI regularly participates in int. comparisons on

- spectral radiance and irradiance
- solar irradiance
- spectral sensitivity
- transmittance and diffuse reflectance of materials
- 3. Development of high-stable onboard standard IR radiation source (*fixed point low temperature blackbody*) for precise in-flight stability monitoring of the instruments.
- 4. Implementation of the international document «Quality Assurance Framework for Earth Observation - QA4EO» in Russia.

Pre-flight calibration of Earth calibration instruments

Standard Radiometric Facility for ground high accuracy calibration of the Earth observation instruments with apertures up to 500 mm in (0.3÷25) µm wavelength range was developed at VNIIOFI in 2006-2010.

Required radiometric accuracy and stability of Earth observation instruments

The most stringent requirements to accuracy and long-term stability of Earth observation instruments are imposed by global climatic change monitoring*

Spectral range, µm	Accuracy	Stability (per decade)
0.3÷3.0	0.5 %	0.1 %
3.0÷25	0.1 K	0.01 K

*Satellite Instrument Calibration for Measuring Global Climate Change. NISTIR 7047.

The solution:

• within spectral range $0.3 \div 3.0 \ \mu\text{m}$ - ground calibration with the unit transfer from absolute cryogenic radiometer as a standard detector

within spectral range 3.0÷25 µm - ground calibration and in-flight stability control with the unit transfer from black body based on phase transition of eutectic alloy/pure metal as a standard source

3÷25 µm

VNILDFI

VNIIOFI's Standard Radiometric Facility

0.3÷3 µm Monochromatic source

Integrating sphere, high temperature blackbody

Large-area low temperature blackbody

Ga fixed-point blackbody

Cryogenic vacuum chamber

VNIDFI

MEASUREMENT ASSURANCE OF EARTH OBSERVATION

VNIIOFI's Standard Radiometric Facility

for calibration of Earth observation instruments in spectral range 0.3 ÷ 3.0 µm

Calibration of Integrating Sphere by comparison against high temperature blackbody

MEASUREMENT ASSURANCE OF EARTH OBSERVATION Metrological characteristics of Integrating Sphere

Uncertainty budget for spectral			1 E+09	Spe	ctral rac	liance (l	ogarith	nic scal	e)
$0.3 \div 3.0 \ \mu\text{m}, \ \%$									
Туре А	Standard deviation of measurements	0.2÷1.2	ຕິ Ξ ເຊິ່າ.E+08						
Туре В	Size of source effect	0.2	ance / 1						
	Scattered light	0.1÷0.6	I.E+07						
	Non-linearity of measuring system	0.1÷0.8	Spectra						
	Wavelength shift	0.02÷0.2	1.E+06		200 200 10	00 1200 140	0 1600 1800		2400_2600
Nonhomogeinety over aperture area		0.2÷0.4		.00 400 6	100 800 TO	Wavelen	gth / nm	U 2000 2200	2400 2600
	Long-time stability	0 25÷0 45	Wavelength (nm)	300	500	900	1100	1500	2500
	Sphere	0.20+0.40	Spectral radiance	1.24·10 ⁶	2.55·10 ⁸	8.31·10 ⁸	7.87·10 ⁸	3.18·10 ⁸	2.23.10 ⁷
	Temperature of blackbody	0.04÷0.37	(W⋅m ⁻³ ⋅sr ⁻¹)						
	Effective emissivity of blackbody	0.05÷0.1	Combined standard uncertainty (%)	1.5	0.6	0.5	0.7	1.0	1.5
Combi uncerta	ned standard ainty	0.5÷1.5							

$$i_{FR} = \frac{\pi \cdot D^2}{4 \cdot l^2} \cdot \varepsilon_{eff} \cdot \int_{\Lambda} F(\lambda) \cdot L_{BB}(\lambda, T) \cdot S_{FR}(\lambda) \cdot d\lambda$$

 i_{FR} - FR signal $S_{FR}(\lambda)$ - spectral irradiance responsivity of FR D - diameter of BB aperture ε_{eff} - effective emissivity of BB $F(\lambda)$ - correction factor for diffraction

$$L_{BB}(\lambda,T) = \frac{c_1}{\pi \cdot \lambda^5 \cdot n^2} \cdot \left[\exp\left(\frac{c_2}{\lambda \cdot T \cdot n}\right) - 1 \right]^{-1}$$

MEASUREMENT ASSURANCE OF EARTH OBSERVATION Metrological characteristics of Integrating Sphere

NIIOFI

Radiation thermometer TSP-2 Central wavelength -650 nm Band - 20 nm

0.20%

0.15% 0.10%

0.05%

0.00%

-0.05% -0.10%

-0.15%

0

Deviation of radiance

at 650 nm

					ananot			iginou	avorag			
			Horizon	tal/verti	cal coord	linate wi	ith origin	n in cente	er of aper	rture (mr	n)	
		-250	-240	-210	-140	-70	0	70	140	210	240	250
	250						0.77%					
6	240					0.75%	0.65%	0.56%				
	210				0.47%	0.66%	0.53%	0.47%	0.45%			
	140			0.33%	0.54%	0.51%	0.75%	0.59	0.50%	0.66%		
	70		0.46%	0.55%	0.44%	0.58%	0.41%	0.34%	0.40%	0.30%	0.38%	
notor TSD 7	0	0.01%	0.11%	0.12%	0.41%	0.31%	0.20%	0.20%	0.49%	-0.37%	-0.20%	-0.39%
$\frac{1}{1} < \frac{1}{5} $	-70		-0.14%	-0.04	-0.22%	-0.11%	-0.05%	-0.01%	0.11%	-0.43%	-0.48%	
h -650 nm	-140			0.09	-0.01%	-0.31%	-0.30%	-0.05%	-0.12%	-0.38%		
	-210				-0.97%	-1.28%	<i>-1.50</i> %	-0.96%	-1.26%			
	-240					-1.20%	-1.30%	-1.06%				
	-250						-1.45%	F	Angle	unifo	rmity	
Timo etc	bility				<u> </u>	0.3	3% 👝	•				
	Dinty				e S	0.:	2% —	$\left\{ - \right\}$				
					an o	0.	1% —	+				
					dia	0.0	0% —			*		
	A ALT 1	Îm .t.	JN And A	ti at at at	radia	0. E -0.	0% — 1% —			\wedge		*
					of radia	0.0 -0. -0.1	0% — 1% — 2% —			\bigwedge		
					on of radia	0.0 .0- .0- .0- .0-	0% 1% 2% 3%					
					tion of radia	0.0 .0- 2.0- 2.0- 0.0- 0.0-	0% 1% 2% 3% 4%					
					viation of radia	0.0 -0.2 -0.3 -0.3 -0.4 -0.4 -0.4	0%					
					Deviation of radia	0 0- 0- 0- 0- 0- 0- 0-	0%					
					Deviation of radia	0.0 -0.2 -0.3 -0.4 -0.4 -0.4 -0.7 -0.7	0%					
	40 5		70	80 9	Deviation of radia	0.0 .0- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0-	0% 1% 2% 3% 4% 5% 6% 7% -30		-10		10	

Spatial uniformity

Space Research Institute (IKI RAN, Russia) space-borne radiometer calibration

Radiance of upper part of aperture area exceeds about 2 % the radiance of lower part. This result is in accordance with result of our previous measurements by radiation thermometer.

1.04

0.96

Monochromatic Source

OFI

Uncertainty budget for relative distribution of spectral radiant power within spectral range 0.3+3.0 µm						
Uncertainty components	Туре	Relative standard uncertainty (%)				
Standard deviation of measurements	Α	0.03 ÷ 1.3				
Detectors sensitivity	В	0.17 ÷ 1.15				
Precision and non-linearity of measuring system	В	0.003				
Wavelength accuracy	В	0.003 ÷ 0.07				
Spectral reflection coefficients of mirrors	В	0.28				
Combined standard uncerta	0.33 ÷ 1.76					

Monochromatic Source

Relative distribution of spectral radiant power 1.0 Relative spectral radiant power 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1300 300 500 700 900 1100 1500 1700 1900 2100 2300 2500

Wavelength / nm

Wavelength, µm	300	500	900	1300	1500	2500
u _A (MS),%	1.59	0.04	0.02	0.08	0.14	0.07
u _B (MS),%	0.37	0.33	0.99	1.65	1.75	1.76
u _c (MS),%	1.71	0.33	0.39	1.76	1.76	1.76

Large area low temperature blackbody (LABB)

- 1 LABB body
- 2 radiation screen
- 3 bracket
- 4 radiator with heat exchanger
- 5 2 axes scanner with IR radiometer
- 6 liquid thermostat (HUBER UNISTAT 750)

The LABB radiator is an aluminum alloy disk with triangular shape grooves. Diameter of the radiator is 500 mm and thickness is 10 mm. The radiator and the screen are coated by the Duplicolor-Barbecue Spray black matte paint. The temperature of the LABB is maintained by a liquid thermostat and heat exchanger and measured by a set of platinum resistance thermometers.

Large-area low temperature blackbody

Range of working temperatures	- 60°C ÷ 180°C
Stability of working temperature (maintained by a liquid thermostat)	± 0.02°C
Diameter of radiator	500 mm
Thickness of radiator	10 mm

Effective emissivity

Large-area low temperature blackbody

Research of spatial uniformity by IR radiometer with band from 2 µm to 5µm Relative deviation (%) from the weighted average

of IR radiometer signal for T=30°C

Angle Radius	0 °	60°	120°	180°	240°	300°	330°
0 mm	0.04	-	-	-	-	-	-
20 mm	0.33	0.26	0.42	0.39	0.07	-0.67	-0.86
60 mm	0.26	0.20	0.67	0.56	-0.04	-0.84	-0.92
80 mm	<i>0.69</i>	0.24	0.57	0.24	0.09	-0.90	-0.86
120 mm	0.29	0.50	0.68	0.12	0.16	-0.91	-0.95
140 mm	0.42	0.45	0.59	0.29	0.05	-1.14	-0.87
180 mm	0.18	0.34	0.54	0.06	-0.46	-1.31	-0.86
200 mm	0.16	0.17	0.52	-0.27	-0.33	-1.17	-1.20
T=50°C	``			T=	30°C		

IR radiometer signal

Thank you