The University of Wisconsin Space Science and Engineering Center Absolute Radiance Interferometer (ARI)

<u>Joe K. Taylor</u>¹, Henry E. Revercomb¹, Henry Buijs², Frederic J Grandmont², P. Jonathan Gero¹, Fred A. Best¹, David C. Tobin¹, Robert O. Knuteson¹, Daniel D. LaPorte¹, Richard Cline¹, Mark Schwarz¹, Jeff Wong¹

¹ Space Science and Engineering Center, University of Wisconsin-Madison,
² ABB-Bomem

Newrad 2011
11th International Conference On New Developments And Applications In Optical Radiometry
Maui, HI, USA

Summary

- The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) and Harvard University (HU) submitted a successful joint proposal entitled "A New Class of Advanced Accuracy Satellite Instrumentation (AASI) for the CLARREO Mission" to the NASA Instrument Incubator Program (IIP). The UW-SSEC / HU team has a long history with the scientific and measurement concepts that have formed the foundation for climate benchmark measurements from space
- The objective of this effort is to advance the technological development of advanced accuracy instrumentation for the measurement of absolute spectrally resolved infrared radiances (3.3 50 μ m) with high accuracy (< 0.1 K, k = 3, brightness temperature at scene temperature) for climate benchmark measurements from space
- The UW-SSEC, is building a demonstration test bed which includes an FTS instrument and calibration and validation system to demonstrate the feasibility of the far and mid infrared instrumentation for a Climate Benchmark Mission.

Topics

- 1. Introduction
- 2. IR Measurement Requirements Summary
- 3. The UW-SSEC Absolute Radiance Interferometer (ARI)

1. Introduction

- 2. IR Measurement Requirements Summary
- 3. The UW-SSEC Absolute Radiance Interferometer (ARI)

A Benchmark for Long-term Climate Trends

- Current high spectral resolution infrared satellite remote sensors, for the most part, are not designed to provide:
 - The radiometric accuracy required to detect the small trends associated with global climate change
 - On-orbit calibration traceability to absolute standards
 - Far infrared (FIR) coverage beyond the normal IR sounding region (typically some part or all of the 3-15 μ m region)

A Benchmark for Long-term Climate Trends

- Satellite Instrument Calibration for Measuring Global Climate Change (NIST Publication NISTIR 7047)
- ASIC³ Report: Achieving Satellite Instrument Calibration for Climate Change
- US NRC Decadal Survey (NRCDS): Earth science and applications from space: national imperatives for the next decade and beyond
 - Climate Absolute Radiance and Refractivity Observatory (CLARREO): Tier 1 (highest priority) mission
- NASA Implementation of CLARREO
 - Selected for development/implementation by NASA (lead: NASA LaRC)
 - Successful MCR (November 2010)
 - Guidance received in the President's FY 2012 budget removed \$1.24B from the \$2.08B FY'11 proposed Climate Initiative during the years between FY 2012 and FY 2015 ... directed cuts have been made to several activities, including two of the Tier 1 missions: CLARREO and the DESDynI.

A Benchmark for Long-term Climate Trends

- UW-SSEC / HU:
 - NISTIR 7047, ASIC³, NRCDS
 - NASA CLARREO Pre-phase A Studies, NASA CLARREO IR Instrument Integrated Product Team (IPT),
 - Instrument Incubator Program (IIP): Work presented here and in other HU / UW-SSEC Newrad 2011 Talks and Posters:
 - Jon Gero: "<u>On-orbit Absolute Blackbody Emissivity Determination Using the Heated Halo Method</u>" (EAO_OR_003, Monday 13:30)
 - Fred Best: "<u>On-Orbit Absolute Radiance Standard for Future IR Remote Sensing Instruments"</u> (EAO_PO_011, Tuesday 13:00 15:00)
 - John Dykema: "Infrared Laser-based Reflectance Measurements for Blackbody Cavity Emissivity Determination" (EAO PO 022, Tuesday 13:00 – 15:00)

- 1. Introduction
- 2. IR Measurement Requirements Summary
- 3. The UW-SSEC Absolute Radiance Interferometer (ARI)

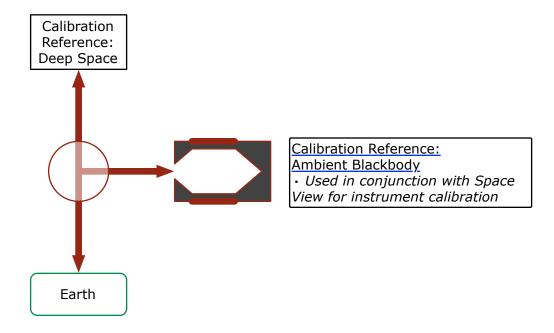
- <u>Information Content:</u> Capture the *spectral* signatures of regional and seasonal climate change that can be associated with physical climate forcing and response mechanisms (to <u>unequivocally</u> detect change and refine climate models)
- Absolute Accuracy: < 0.1 K, k = 2, brightness temperature <u>for combined measurement and</u>
 sampling uncertainty for annual averages of 15°x30° lat/long regions (to achieve goal of resolving a climate change signal in the decadal time frame)
- <u>Calibration transfer to other spaceborne IR sensors:</u> Accuracy approaching 0.1 K, k = 3, using Simultaneous Nadir Overpasses
 (to enhance value of sounders for climate process studies actually drives few requirements)

Basic Requirements (Infrared)

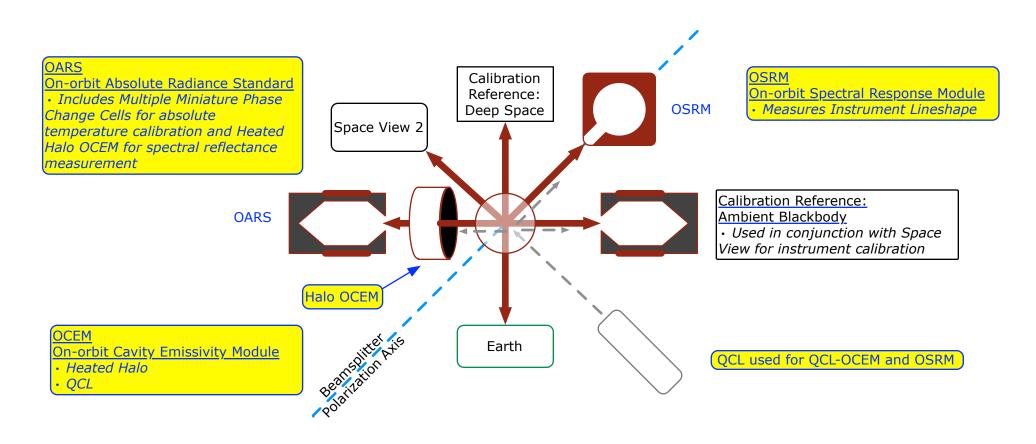
- Spectral Coverage: 3 50 μm (200 3000 cm⁻¹)
 (includes Far IR to capture most of the information content and emitted energy)
- Spectral Resolution: ~0.5 cm⁻¹ unapodized (1 cm max OPD)
 (to capture atmospheric stability, aid in achieving high radiometric accuracy, and allow accurate spectral calibration from atmospheric lines)
- Noise: NEdT(10 sec) < 1.5 K for climate record,
 < 1.0 K for cal transfer
 (not very demanding)
- <u>Spatial Footprint & Angular Sampling</u>: Order 100 km *or less*, nadir only (no strong sensitivity to footprint size, nadir only captures information content).
- Coverage: Contiguous coverage not required

Basic Requirements (Infrared)

- <u>Pre-launch Calibration/Validation</u>: Characterization against NIST primary infrared standards and evaluation of flight blackbodies with NIST facilities (recent "best practice")
- On-orbit Calibration: Onboard warm blackbody reference (~300K), with phase change temperature calibration, plus space view, supplemented with characterization testing (to detect any slow changes)

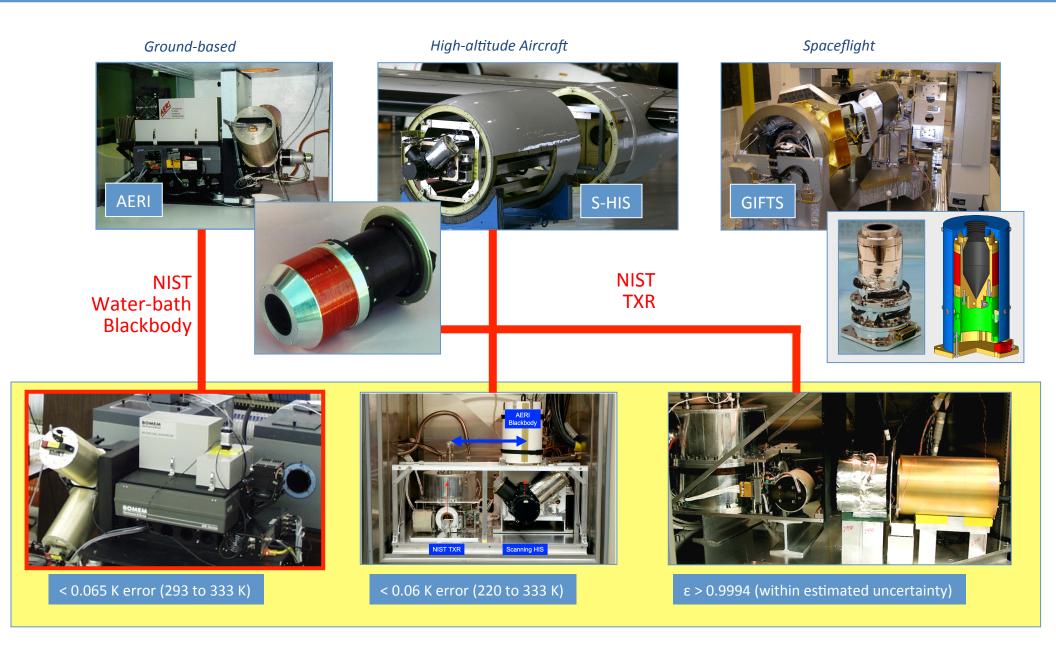

Basic Requirements (Infrared)

- <u>Pre-launch Calibration/Validation</u>: Characterization against NIST primary infrared standards and evaluation of flight blackbodies with NIST facilities (recent "best practice")
- On-orbit Calibration: Onboard warm blackbody reference (~300K), with phase change temperature calibration, plus space view, supplemented with characterization testing (to detect any slow changes)


 <u>Validation, On-orbit</u>: On-orbit, variable-temperature standard blackbody, referenced to absolute physical standards (to maintain SI measurements on orbit)

- 1. CLARREO Introduction
- 2. IR Measurement Requirements Summary
- 3. The UW-SSEC Absolute Radiance Interferometer (ARI)

UW-SSEC & Harvard Technology Developments Under NASA IIP

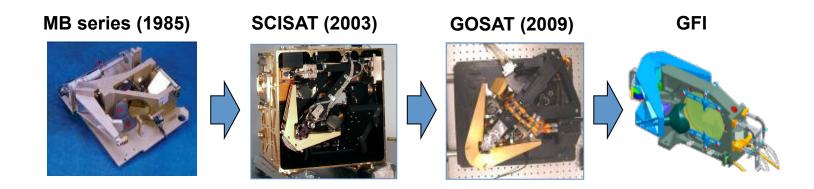

UW-SSEC & Harvard Technology Developments Under NASA IIP

Viewing configuration providing immunity to polarization effects.

Topics 1. Introduction 2. Requirements 3. The ARI 4. Summary

SSEC Spectrometer, Blackbody Heritage & Ties to NIST

UW-SSEC Absolute Radiance Interferometer

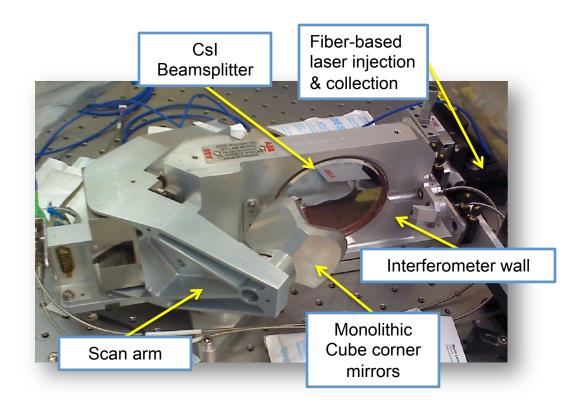

- The UW-SSEC Absolute Radiance Interferometer includes:
 - A scene selection mirror assembly;
 - Fore optics designed specifically for high radiometric accuracy;
 - A 4-port cube corner, rocking arm interferometer with a diode laser based metrology system;
 - Two aft optics assemblies, 1 at each output port of the interferometer;
 - A 77 K multiple semi-conductor detector (700 2500 cm⁻¹) and dewar assembly, and associated mechanical cooler;
 - A DTGS pyroelectric detector (50 1800 cm⁻¹) assembly.

<u>Each chosen for their strong spaceflight heritage</u> such that detailed performance testing can be conducted on a system with a clear path to space. *For compatibility with an IIP budgets, the electronics are not flight designs*

Topics 1. Introduction 2. Requirements 3. The ARI 4. Summary

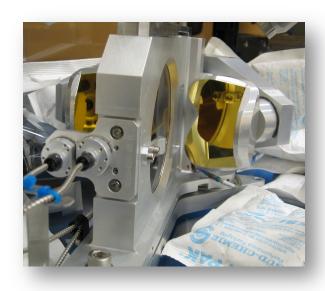
The Generic Flight Interferometer (GFI)

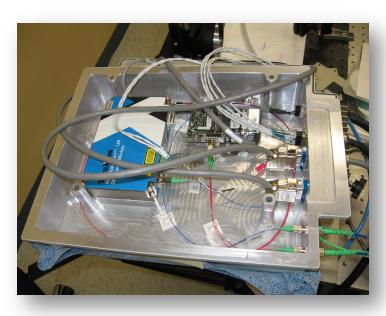
- The UW ARI is based on ABB's Generic Flight Interferometer (GFI) architecture: a flex bladebased frictionless double pendulum scanning mechanism with 25 years of heritage and a direct evolution of 2 successful spaceborne interferometers:
 - SCISAT / ACE-FTS (2003): Initial design life of 2 years and still operating in compliance with performance requirements after 8 years
 - GOSAT / TANSO-FTS (2009): Currently meets all performance requirements in flight
- The GFI baseline includes some improvements over former successful TRL-7 implementation:
 - Fiber-linked metrology for reduced heat load on interferometer and simplified alignment / redundancy management
 - Monolithic cube corner mirror for increased robustness to launch vibration.
- These improvements were qualified at TRL-5 in dedicated CSA sponsored Space Technology Development Programs. The GFI is backward compatible with former TRL-7 design elements.



GFI -> GICS (Generic Interferometer for Climate Studies)

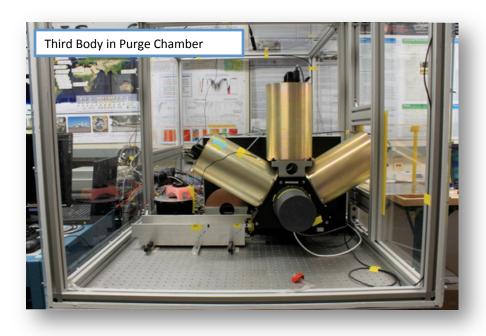
© ABB Group


- 4 port
- Different laser path
- Csl beamsplitter to cover spectral range
- Mounting adapted for CsI
- Self compensated beamsplitter instead of substrate and compensator
- Replicated monolithic cube corner


- Vacuum compatible Interferometer
- Modified COTS electronics and software used for IIP
- Mass: < 7 kg (GICS, Aluminum)
- Power: Avg 18 W / Pk 23 W (flight design)

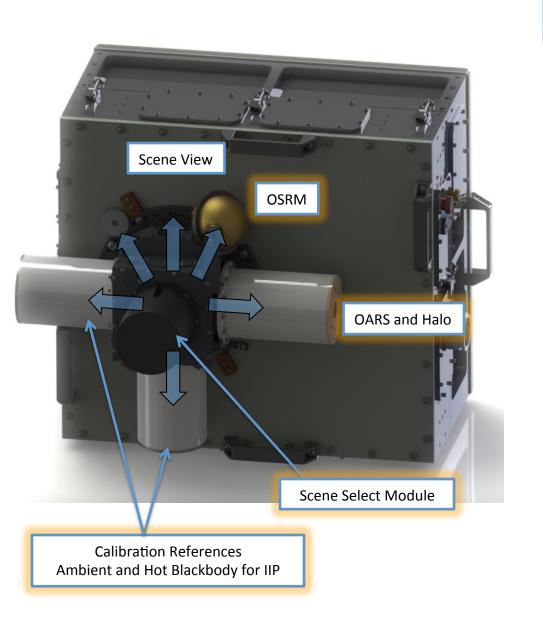
Topics 1. Introduction 2. Requirements 3. The ARI 4. Summar

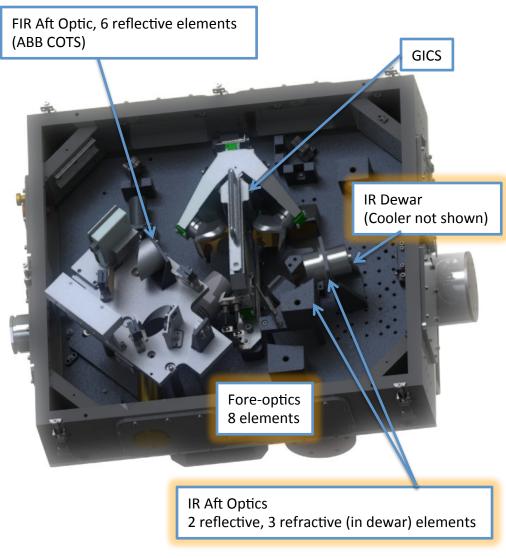
GICS Interferometer



© ABB Group

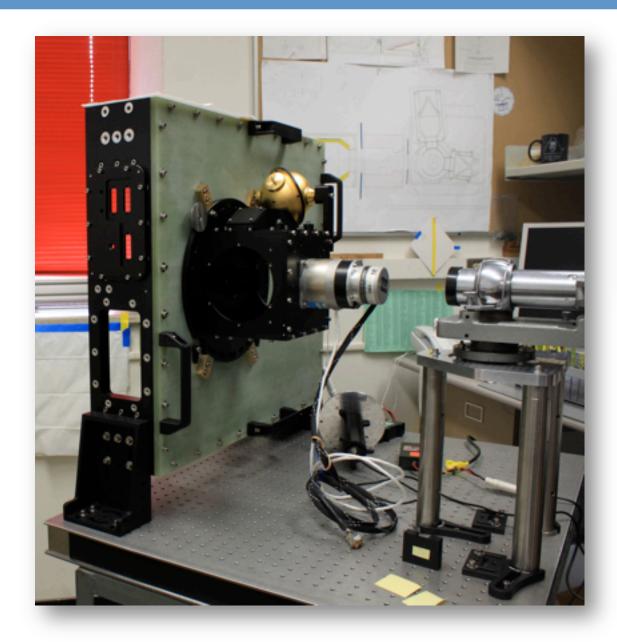
Breadboard 1

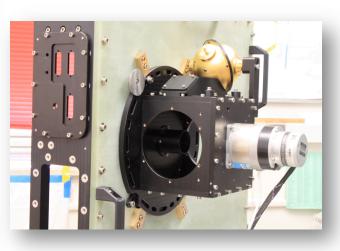

Breadboard 1 Sky View: Cold and Dry



Breadboard 1

- Data acquisition completed, and analysis in progress
- Preliminary analysis does not indicate any outstanding issues
 - Detector Performance Testing (Pyro)
 - Interferometric Noise Characterization
 - Spectral Calibration Verification
 - Radiometric Calibration Verification
 - Clear sky view testing (comparison to LBLRTM)
 - Heated Halo


Breadboard 2 (Sensor Prototype)



Topics 1. Introduction 2. Requirements 3. The ARI 4. Summary

Breadboard 2 (Sensor Prototype)

Assembly and Alignment - August

Summary

- An excellent, low cost, climate benchmark mission has been defined
- The proposed IR measurement requirements are supported by good technical readiness
- The UW-SSEC ARI (and OT/V)
 - Will allow us to demonstrate the technology necessary to measure IR spectrally resolved radiances (3.3 50 μ m) with ultra high accuracy (< 0.1 K, k = 3, brightness temperature at scene temperature) for a benchmark climate mission.
 - Subsystems have been selected and developed to provide a system with a clear path to space.
 - Testing to be completed in upcoming months

THANK YOU