The Infrared Integrating Sphere (IRIS) Radiometer for Atmospheric Longwave radiation Measurements

Julian Gröbner Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center

Global Energy Balance

WIC

Traceability to SI units

Atmospheric longwave irradiance is traceable to SI units (Wm⁻²) using blackbody cavities.

Two independent cavities are operational at PMOD/WRC:

 $\frac{E_{BB2007}}{E_{BB1995}} = 0.99 \pm 0.006$

Gröbner, AO 2008

BB2007 – New cavity built in 2007

- •Cylindrical cavity with inclined bottom
- Calculated effective emissivity

0.99993(33)

Philipona et al., 1995

BB1995 – original cavity built in 1995
•Cylindrical cavity with flat bottom
•Calculated effective emissivity
0.9985

Pyrgeometer Calibrations in a Blackbody Cavity

Calibration spectrum

Relative spectral transmission

'IC

Correction function due to Spectral dome Transmission

Atmospheric longwave spectrum

Pyrgeometer Calibrations in a Blackbody Cavity

Development and operation of the <u>Infrared Integrating Sphere</u> (IRIS) Radiometer

Key features of the IRIS Radiometer

Windowless

•Irradiance measurement by using a 60 mm gold-plated integrating sphere as input optic

•High sensitivity from a windowless pyroelectric detector

•Flat spectral response

•Measurement frequency 0.1 Hz

•Automatic unattended operation

•Nighttime measurements only

IRIS Calibration in Blackbody

Signal proportional to net radiation

 $\boldsymbol{U} = \boldsymbol{C} \cdot (\boldsymbol{E}_{IN} - \boldsymbol{E}_{REF})$

omod wrc

IRIS Calibration in Blackbody

Signal proportional to net radiation

IRIS Uncertainty Budget

Table 2. Combined uncertainty budget for atmospheric downwelling longwave irradiance measured with the IRIS radiometer for winter and summer conditions at Davos, Switzerland. For the determination of the individual uncertainty components, a temperature of either +15° C (summer), or -15° C (winter) is assumed. Furthermore, a net radiation E_{net} component of 100 Wm⁻², an upper limit for clear sky conditions, is also assumed to convert from relative to absolute uncertainties in units of Wm⁻².

Parameter	Uncertainty $[Wm^{-2}]$		-		
	Winter	Summer			
Calibration Residuals	0.2	0.2	-		
Calibration reproducibility C	0.5	0.5			
Gold collar	0.2	0.2			
Temperature correction	0.9	0.1	1195%=	1.8 Wm^{-2}	summer (+15°C)
Signal std. dev. U	0.2	0.2	03370-	2.4 Mm^{-2}	winter (15°C)
IRIS reference cavity	0.4	0.6		2.4 00111	winter (-15 C)
BB2007 uncertainty	0.2	0.2			
combined uncertainty	1.2	0.9			
Expanded uncertainty	2.4	1.8			

The expanded uncertainty is obtained by multiplying the standard measurement uncertainty with a coverage factor k=2, which for a normal distribution corresponds to a coverage probability of about 95%.

pmod wrc

Outdoor comparison in April 2011

IRIS ID	Offset to mean Wm ⁻²	95% Variability Wm ⁻²
#2	0.6	±0.4
#3	-0.6	±0.5
#4	-1.1	±0.7
#5	0.7	±0.7

pmod wrc

Outdoor comparison to World Infrared Standard Group of Pyrgeometers (WISG)

Outdoor comparison to World Infrared Standard Group of Pyrgeometers (WISG)

Conclusions

IRIS Radiometer:

- Validation by calibration with additional Blackbody Cavities.
- Determination of relative spectral Responsivity over 1-50 μm.
- Deployment at additional sites (in progress).

Eventually:

• Comparison to independently calibrated pyrgeometers once they become available.

Goal:

• Establishment of a group of atmospheric longwave Radiometers traceable to SI units.

