

# A Differential Spectral Responsivity Measuring System for Solar Cell Calibration

Gan Xu and Xuebo Huang National Metrology Centre A\*STAR Singapore

NEWRAD 2011, Maui, Hawaii 20 Sep 2011

## **Outlines**

- Introduction
- Differential spectral responsivity (DSR)
- DSR measurement system at NMC
- Measurement result and uncertainty budget
- Summary
- Future works
- References

## Solar cell efficiency



- Current world records: (25.0 ± 0.5)% for Si single cell, (42.3 ± 2.5) % for InGaP/GaAs/InGaAs multi-junction cell
- Main challenges: higher cell efficiency and lower production cost
- High accuracy calibration of cell efficiency requires primary standard traceable to SI radiometric unit for spectral responsivity and quantum efficiency



## **Characterisation/calibration of a solar cell**



- Key parameters to be determined:
  - ➡ Short circuit current I<sub>sc</sub>
  - ⇒ Open circuit voltage V<sub>oc</sub>
  - ➡ Maximum power P<sub>max</sub>
  - ➡ Fill factor FF
  - 🖙 Area A
  - ⇔ etc
- Full characterisation requires the measurement of I-V curve done by an I-V tester under standard testing conditions (STC)

## **Standard testing conditions**

- Solar cell temperature 25°C
- Spectral distribution: AM1.5 global ref spectrum (IEC 60904-3, Ed.2, 2008)
- total irradiance level 1000W/m<sup>2</sup> (with respect to ref solar spectrum)



## **Efficiency measurement using a solar simulator**



## **Outlines**

- Introduction
- Differential Spectral Responsivity (DSR)
- DSR Measurement System at NMC
- Measurement result and uncertainty budget
- Summary
- Future works
- References

## **DSR measurement technique**



## SR & DSR and broadband responsivity



• Linear cell (SR independent from irradiance level)  $s(\lambda) = \left. \frac{I_{sc}(\lambda)}{E(\lambda)} = \frac{\Delta I_{sc}(\lambda)}{\Delta E(\lambda)} \right|_{E_b} \qquad s(E_b) = \frac{I_{sc}(E_b)}{E_b} = \frac{\Delta I_{sc}(E_b)}{\Delta E_b} \Big|_{E_b}$ 

 Non-linear cell: SR varies with irradiance level so that cannot be measured at low irradiance level ⇒ DSR measurement at different bias level is required to get the broadband responsivity under STC condition s<sub>STC</sub> ⇒ SCC under STC condition /<sub>STC</sub>

## **DSR measurement process (1)**

a) Measure the value of absolute DSR at a specific wavelength  $(\lambda_o)$  and short circuit current without bias ,  $Isc(E_o)$ :

$$\widetilde{s}(\lambda_0, I_{sc}(E_0)) \tag{1}$$

b) Measure function of relative DSR at different bias levels ( $E_b$ ) in a specified wavelength range (Si cell: 280 nm -1200 nm):

$$\widetilde{S}_{rel}(\lambda, I_{sc}(E_b)) \tag{2}$$

c) Combine (1) & (2), absolute DSR :

 $\widetilde{s}(\lambda, I_{sc}(E_b)) = \widetilde{s}(\lambda_0, I_{sc}(E_0)) * \widetilde{s}_{rel}(\lambda, I_{sc}(E_b)) \quad (3)$ 

## **DSR measurement process (2)**

d) DSR as function of short circuit current (SCC) of the solar cell under test in accordance with IEC AM1.5 solar spectrum:

$$\widetilde{S}_{AM\,1.5}(I_{sc}(E_b)) = \frac{\int_{0}^{\infty} \widetilde{S}(\lambda, I_{sc}(E_b)) E_{\lambda, AM\,1.5}(\lambda) d\lambda}{\int_{0}^{\infty} E_{\lambda, AM\,1.5}(\lambda) d\lambda} \qquad (4)$$

e) Calculate value of *I*<sub>STC</sub> under STC :

$$1,000W / m^{2} = E_{STC} = \int_{0}^{I_{STC}} \frac{dI_{sc}}{\tilde{s}_{AM1.5}(I_{sc})}$$
(5)

## **Outlines**

- Introduction
- Differential Spectral Responsivity (DSR)
- DSR Measurement System at NMC
- Measurement Procedure and Data Processing
- Measurement result and uncertainty budget
- Summary
- Future works
- References

## Layout of DSR facility at NMC



- Bias lighting irradiance: 0.1 1.2 sun
  - monitored by a ref solar cell
- Reference standards used: Si-PD & InGaAs PD with precision apertures
  - Only measure probe beam w/o bias
  - Ac signal only

#### ≻ DUT

- 20 x 20 mm (WPVS design) up to 6" single cell
- Measure both bias and probe beams
- Bias: DC signal (I<sub>sc</sub>) with probe blocked
- Probe: AC signal only with bias present, DC component removed by a high pass filter& ac coupling
- Ref PDs,Ref solar cell & test sample solar cell all on a temperature controlled, motorised x-y-z stage
- Monintor detectors (Si & InGaAs PDs)
  - Ac signal only, recorded simultaneous with ref PD or DUT during scans
  - to monitor the changes of probe beam
  - served as reference across different scans
- A microlens array (flattop) beam homogeniser probe beam nonuniformity <1%</p>

## **NMC's DSR measurement system**

• A multi-functional system

| System<br>Connection     | Utility                        | Temperature<br>Monitor          | Wavelength<br>Calibration                     | System<br>characterisation            |
|--------------------------|--------------------------------|---------------------------------|-----------------------------------------------|---------------------------------------|
| Lamp Stability           | Bias Irradiance<br>Calibration | (Probe/Bias)<br>Beam Uniformity | Solar Cell<br>Spatial Uniformity<br>(Mapping) | functions    Measurement    functions |
| Linearity<br>Measurement | SR Calibration                 | DSR Calibration                 | Temperature<br>Coefficient<br>Measurement     |                                       |



## Microlens array beam homogeniser (SUSS MicroOptics)

- Key specifications:
  - Array structure: two sets of cylindrical lenses crossed each other
  - Lens material: fused silica, Spectral transmittance of lens material (280 nm – 2400 nm): >85 %
  - Size: 50 mm (L) x 50 mm (W) x 2.25 mm (T),
    Clear aperture (Active area): 49 mm (L) x 49 mm (W)
  - Lens pitch: 250 um
  - Beam divergence angle after the microlens array: ± 5°



## Probe beam uniformity (w/o homogeniser)

Non-uniformity (NU) over area 20 mm x 20 mm, Halogen lamp, band width 5nm, wavelength 650 nm



$$NU = \frac{Max - Min}{Max + Min} = 32\%$$

## Probe beam uniformity (with homogeniser)

#### Halogen lamp 800W, PV cell: 20 mm x 20 mm, Ref PD aperture: 4 mm

#### WL: 650 nm





| 0.990684 | 1.000586 | 1.003360 | 1.011550 | 1.008690 |
|----------|----------|----------|----------|----------|
| 0.994197 | 0.996244 | 1.010296 | 1.009384 | 1.006357 |
| 0.982454 | 0.987584 | 1.001803 | 1.008317 | 0.998927 |
| 0.988859 | 0.994830 | 1.004042 | 1.007302 | 1.000572 |
| 0.990424 | 0.991274 | 1.000614 | 1.009628 | 1.002023 |
|          |          |          |          |          |
| Ave      | 1.(      | 0000     |          |          |
| NU       | 1        | .5%      |          |          |

| Correction | 0.9982 | (-0.18%) |
|------------|--------|----------|
|            |        |          |

$$Correction = \frac{E(DUT)}{E(Re f - PD)}$$

| 0.985601 | 0.990153 | 1.007646 | 1.012401 | 1.003347 |
|----------|----------|----------|----------|----------|
| 0.991372 | 0.993448 | 1.012057 | 1.015844 | 1.003644 |
| 0.985772 | 0.988785 | 1.003695 | 1.008327 | 0.997904 |
| 0.985717 | 0.989686 | 1.005431 | 1.008579 | 1.000916 |
| 0.988959 | 0.993247 | 1.004685 | 1.017637 | 1.005147 |

| <mark>Ave </mark> | 1.0000 |          |  |
|-------------------|--------|----------|--|
| NU                | 1.6%   |          |  |
| <b>Correction</b> | 0.9963 | (-0.37%) |  |







## **Bias light system**





- 24x50W (12V)/24° Halogen lamps with multilens reflector
- Colour temperature: 3050k
- Two layer structure
- Different lamp combinations selectable by switches
- Distance of bias light holder to sample stage adjustable by motorised stages for both
- Able to provide uniform bias
  Halogen irradiance from 0.1 1.2
  standard sun
  - Best spatial uniformity achievable <2% on 20 mm x 20 mm sample

18

## Software simulation for bias beam uniformity at different configurations



## **Bias beam uniformity measurements**





Contour scale : 0.5%

CCD Camera (uniformity: <1%)



### Method 2: CCD camera + reflectance target



## **Bias beam uniformity measurement results**

Bias irradiance vs distance between



Bias beam uniformity vs bias irradiance

Possible causes of difference btw simulation and real measurements:

- Different spatial optical power distribution of individual lamp ٠
- Different geometric construction and alignment of individual lamp ٠
- Retro-reflection, multiple reflection and stray light in real ٠ measurement
- Temperature effect and light intensity drift during measuring period ٠ using scanning method



## Photos of DSR system at NMC

## **Outlines**

- Introduction
- Differential Spectral Responsivity (DSR)
- DSR Measurement System at NMC
- Measurement result and uncertainty budget
- Summary
- Future works
- References

## **Measurement results**

Absolute SR measurement result

| Wavelength<br>(nm) | Absolute SR<br>(mA·W <sup>-1</sup> ·m²)<br>PTB | Unc<br>(%)<br>PTB | Absolute SR<br>(mA·W <sup>-1</sup> ·m <sup>2</sup> )<br>NMC | Unc<br>(%)<br>NMC | Deviation (%)<br>s(NMC)/s(PTB) |
|--------------------|------------------------------------------------|-------------------|-------------------------------------------------------------|-------------------|--------------------------------|
| 650                | 0.15333                                        | 0.5               | 0.15244                                                     | 0.5               | -0.58                          |

#### Short circuit current measurement result

| I <sub>sтс</sub> (mA) | U(I <sub>sтс</sub> )(%) | I <sub>sтс</sub> (mA) | U(I <sub>sтс</sub> )(%) | Deviation (%) |
|-----------------------|-------------------------|-----------------------|-------------------------|---------------|
| РТВ                   | РТВ                     | NMC                   | NMC                     | I(NMC)/I(PTB) |
| 115.46                | 0.5                     | 115.1                 | 2.0                     | -0.31         |

## **Uncertainty evaluation of SR measurement**



SR of PV cell,  $s_s(\lambda)$ :

.

$$s_{t}(\lambda) = \frac{\frac{V_{t}(\lambda)}{V_{t,m}(\lambda) \cdot G_{t}}}{\frac{V_{s}(\lambda)}{V_{s,m}(\lambda) \cdot G_{s}}} s_{s}(\lambda) + \Delta s_{\lambda}(\lambda)$$

(6)

 $s_s(\lambda)$ : spectral responsivity of reference photodiode;  $V_t(\lambda) \& V_{t,m}(\lambda)$ : signal & monitor voltages of test PV cell;  $G_t$ : Gain of pre-amplifier for test PV cell measurement  $V_s(\lambda) \& V_{s,m}(\lambda)$ : signal & monitor voltages of ref photodiode;  $G_s$ : Gain of pre-amplifier for ref photodiode measurement  $\Delta s_\lambda(\lambda)$ : wavelength error of monochromator

## **Unc equation of SR measurement**

The main sources of uncertainty can be modelled from eq. (6) through partial differentiation. Assuming all components are not correlated, relative uncertainty,  $u(s_t)/s_t$  can be derived as follows:

$$\left(\frac{u(s_t)}{s_t}\right)^2 = \left(\frac{u(V_t)}{V_t}\right)^2 + \left(\frac{u(V_{t,m})}{V_{t,m}}\right)^2 + \left(\frac{u(V_s)}{V_s}\right)^2 + \left(\frac{u(V_{s,m})}{V_{s,m}}\right)^2 + \left(\frac{u(G_s)}{G_s}\right)^2 + \left(\frac{u(G_t)}{G_t}\right)^2 + \left(\frac{u(S_s)}{S_s}\right)^2 + \left(\frac{$$

| Unc Type                              | Uncertainty component                                            |                            |                                                     |  |  |  |  |
|---------------------------------------|------------------------------------------------------------------|----------------------------|-----------------------------------------------------|--|--|--|--|
| u(V <sub>t</sub> )/V <sub>t</sub>     | Signal repeatability of test PV cell Positioning of test PV cell |                            |                                                     |  |  |  |  |
| u(V <sub>t,m</sub> )/V <sub>t,m</sub> | Monitor repeatability during test PV cell measurement            |                            |                                                     |  |  |  |  |
| u(V <sub>s</sub> )/V <sub>s</sub>     | Signal repeatability of std PD                                   | Positioning of std PD      | Unc of area correction for<br>Test PV cell & std PD |  |  |  |  |
| u(V <sub>s,m</sub> )/V <sub>s,m</sub> | Monitor repeatability during std PD                              | neasurement                |                                                     |  |  |  |  |
| U(G <sub>s</sub> )/G <sub>s</sub>     | Calibration uncertainty of gain of pre                           | e-amplifier of std PD      |                                                     |  |  |  |  |
| U(G <sub>t</sub> )/G <sub>t</sub>     | Calibration uncertainty of gain of pre-amplifier of test PV cell |                            |                                                     |  |  |  |  |
| U(s <sub>s</sub> )/s <sub>s</sub>     | Calibration uncertainty of std PD                                |                            |                                                     |  |  |  |  |
| $U(\Delta s_{\lambda})/s_{t}$         | Uncertainty due to wavelength calibr                             | ation unc.of monochromator |                                                     |  |  |  |  |

## Unc budget of absolute SR measurement (650 nm)

| u(x)  | Source of uncertainty                                    | type | Value<br>(%) | C <sub>i</sub> | Probability<br>distribution | k    | u(x <sub>i</sub> )<br>(%) | u <sub>i</sub> (y)<br>(%) | DoF |
|-------|----------------------------------------------------------|------|--------------|----------------|-----------------------------|------|---------------------------|---------------------------|-----|
| u(a1) | Signal repeatability of test PV cell                     | A    | 0.01         | 1              | Normal                      | 1    | 0.01                      | 0.01                      | 9   |
| u(a2) | Unc. due to positioning of test PV cell                  | В    | 0.1          | 1              | Rectangular                 | 1.73 | 0.06                      | 0.06                      | x   |
| u(b1) | Monitor repeatability during test<br>PV cell measurement | A    | 0.09         | 1              | Normal                      | 1    | 0.09                      | 0.09                      | 9   |
| u(c1) | Signal repeatability of std PD                           | A    | 0.02         | 1              | Normal                      | 1    | 0.02                      | 0.02                      | 9   |
| u(c2) | Unc. due to positioning of std PD                        | В    | 0.1          | 1              | Rectangular                 | 1.73 | 0.06                      | 0.06                      | 8   |
| u(c3) | Unc. due to area correction for<br>Test PV cell & std PD | В    | 0.2          | 1              | Rectangular                 | 1.73 | 0.12                      | 0.12                      | 8   |
| u(d1) | Monitor repeatability during std<br>PD measurement       | A    | 0.03         | 1              | Normal                      | 1    | 0.03                      | 0.03                      | 19  |
| u(e)  | Cal. unc. of amplifier gain of test<br>PV cell           | В    | 0.05         | 1              | Normal                      | 2    | 0.025                     | 0.025                     | x   |
| u(f)  | Cal. unc. of amplifier gain of std<br>PD                 | В    | 0.05         | 1              | Normal                      | 2    | 0.025                     | 0.025                     | x   |
| u(g)  | Cal. Unc. of std PD                                      | В    | 0.3          | 1              | Normal                      | 2    | 0.15                      | 0.15                      | x   |
| u(h)  | Unc. due to wavelength unc. (0.3 nm)                     | В    | 0.06         | 1              | Rectangular                 | 1.73 | 0.035                     | 0.035                     | x   |
|       | Combined uncertainty (k=1)                               |      |              |                |                             |      |                           | 0.24                      |     |

## **Uncertainty evaluation of DSR measurement**



DSR of PV cell,  $s_s(\lambda)$ :

$$s_{t}(\lambda) = \frac{\frac{V_{t}(\lambda)}{V_{t,m}(\lambda) \cdot G_{t}}}{\frac{V_{s}(\lambda)}{V_{s,m}(\lambda) \cdot G_{s}}} s_{s}(\lambda)$$
$$+ \Delta s_{\lambda}(\lambda) + \Delta s_{T}(\lambda) + \Delta s_{B}(\lambda)$$
(7)

 $s_s(\lambda)$ : spectral responsivity of reference photodiode;  $V_t(\lambda) \& V_{tm}(\lambda)$ : signal & monitor voltages of test PV cell;  $G_t$ : Gain of pre-amplifier for test PV cell measurement  $V_{s}(\lambda) \& V_{s,m}(\lambda)$ : signal & monitor voltages of ref photodiode;  $G_s$ : Gain of pre-amplifier for ref photodiode measurement  $\Delta s_{\lambda}(\lambda)$ : wavelength error of monochromator  $\Delta s_{\tau}(\lambda)$ : Uncertainty due to temperature effect  $\Delta s_{B}(\lambda)$ : Uncertainty due to bias light instability

## **Unc equation of DSR calibration**

The main sources of uncertainty can be modelled from eq. (7) (only relative measurement components and temperature effect) through partial differentiation. Assuming all components are not correlated, relative uncertainty,  $u(s_t)/s_t$  can be derived as follows:

$$\left(\frac{u(DSR)}{t} \frac{1}{(DSR)_t}\right)^2 = \left(\frac{u(V_t)}{V_t}\right)^2 + \left(\frac{u(V_s)}{V_s}\right)^2 + \left(\frac{u(G_s)}{G_s}\right)^2 + \left(\frac{u(G_t)}{G_t}\right)^2 + \left(\frac{u(\Delta s_{\lambda})}{s_t}\right)^2 + \left(\frac{u(\Delta s_T)}{s_t}\right)^2 + \left(\frac{u(\Delta s_B)}{s_t}\right)^2 + \left(\frac{u(\Delta s_B)}{s$$

| Unc type                           | Uncertainty component                                              |                                         |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| u(V <sub>t</sub> )/V <sub>t</sub>  | Signal repeatability of test PV cell                               | Unc. due to positioning of test PV cell |  |  |  |  |
| u(V <sub>s</sub> )/V <sub>s</sub>  | Signal repeatability of std PDUnc. due to positioning of std PD    |                                         |  |  |  |  |
| U(G <sub>s</sub> )/G <sub>s</sub>  | Calibration uncertainty of gain of amplifier of std PD             |                                         |  |  |  |  |
| U(G <sub>t</sub> )/G <sub>t</sub>  | Calibration uncertainty of gain of amplifier of test PV cell       |                                         |  |  |  |  |
| $U(\Delta s_{\lambda})/s_{t}$      | Uncertainty due to wavelength calibration of monochromator         |                                         |  |  |  |  |
| U(Δs <sub>T</sub> )/s <sub>t</sub> | Uncertainty due to temperature effect                              |                                         |  |  |  |  |
| U(Δs <sub>B</sub> )/s <sub>t</sub> | Uncertainty due to bias light instability and bias beam uniformity |                                         |  |  |  |  |

## Unc budget of DSR calibration (650 nm)

| u(x)  | Source of uncertainty                                        | type | Value<br>(%) | C <sub>i</sub> | Probability<br>distribution | k    | u(x <sub>i</sub> )<br>(%) | u <sub>i</sub> (y)<br>(%) | DoF |
|-------|--------------------------------------------------------------|------|--------------|----------------|-----------------------------|------|---------------------------|---------------------------|-----|
| u(CT) | Signal repeatability of test PV cell                         | A    | 0.57         | 1              | Normal                      | 1    | 0.57                      | 0.57                      | 2   |
| u(a1) | Unc. due to positioning of test PV cell                      | В    | 0.1          | 1              | Rectangular                 | 1.73 | 0.06                      | 0.06                      | x   |
| u(CR) | Signal repeatability of std PD                               | A    | 0.46         | 1              | Normal                      | 1    | 0.46                      | 0.46                      | 2   |
| u(c1) | Unc. due to positioning of std PD                            | В    | 0.1          | 1              | Rectangular                 | 1.73 | 0.06                      | 0.06                      | x   |
| u(e)  | Cal. unc. of amplifier gain of test<br>PV cell               | В    | 0.05         | 1              | Normal                      | 2    | 0.025                     | 0.025                     | œ   |
| u(f)  | Cal. unc. of amplifier gain of std<br>PD                     | В    | 0.05         | 1              | Normal                      | 2    | 0.025                     | 0.025                     | œ   |
| u(g)  | Unc. due to wavelength unc. (0.3 nm)                         | В    | 0.06         | 1              | Rectangular                 | 1.73 | 0.035                     | 0.035                     | œ   |
| u(h)  | Uncertainty due to temperature<br>effect (+/-1°C)            | В    | 0.076        | 1              | Rectangular                 | 1.73 | 0.044                     | 0.044                     | œ   |
| u(i)  | Uncertainty due to bias light instability and non-uniformity | В    | 0.5          | 1              | Rectangular                 | 1.73 | 0.29                      | 0.29                      | 00  |
|       | Combined uncertainty (k=1)                                   |      |              |                |                             |      | 0.80                      |                           |     |

## **Uncertainty evaluation for** *I<sub>sc</sub>* **under STC**

- Sources of uncertainty for *I*<sub>sc</sub> under STC
  - Calibration uncertainty of ref PDs
  - Aperture area calibration uncertainty of PDs
  - Area measurement of DUT
  - Positioning of Ref PD and DUT
  - Probe beam uniformity
  - Bias beam uniformity: Xe, Halogen
  - DC Current measurement: repeatability, drift during scan, source meter, shunt resistance
  - AC current measurement (relative): repeatability, linearity of amplifiers & lock-in amplifier
  - AC current measurement (absolute): probe beam uniformity, aperture area of Ref PDs, repeatability
  - DSR measurement: bias stability and uniformity

## **Uncertainty budget of** *I<sub>STC</sub>* **calibration**

The uncertainty budget of  $I_{STC}$  calibration is as shown in table below:

| Unc type | Uncertainty component                                                 | Unc value (%) |
|----------|-----------------------------------------------------------------------|---------------|
| A        | Repeatability of DSR measurements                                     | 0.5           |
| В        | Absolute SR calibration at specified wavelength                       | 0.24          |
| В        | Relative SR calibration                                               | 0.74          |
| В        | Positioning of test PV cell and ref PD                                | 0.1           |
| В        | Spectral mismatch between bias radiation and reference solar spectrum | 0.2           |
| В        | Non-linearity of the amplifiers                                       | 0.1           |
| В        | Mismatch of test PV cell area and std PD area (after correction)      | 0.1           |
| В        | Temperature effect on test PV cell (+/- 1 K)                          | 0.08          |
| В        | Short circuit current $(I_{SC})$ measurement by DVM and std resistor  | 0.05          |
|          | Combined uncertainty (k=1)                                            | 1.0           |

## **Summary**

- DSR system has been set up at NMC-A\*STAR
- Absolute responsivity at 650 nm of the test PV cell was calibrated at NMC with uncertainty of 0.5% (k=2)
- Deviation of absolute responsivities at 650 nm between NMC and PTB calibrations is -0.58%
- Short circuit current under standard test conditions (*I*<sub>STC</sub>) of the test PV cell was calibrated at NMC with uncertainty of 2.0% (k=2)
- Deviation of  $I_{STC}$  between NMC and PTB calibration is -0.31%

## **Future works**

- Study and improve repeatability of relative SR measurements
- Study and improve repeatability of DSR measurements
- Investigation of bias light instability effect on  $I_{STC}$  measurements
- Investigation of temperature effect on  $I_{STC}$  measurements
- Investigation of spectral bandwidth effect on  $I_{STC}$  measurements

## Acknowledgement

This work is funded by Science & Engineering Research Council of A\*STAR of Singapore

The Authors would like to thank **Dr Stefan Winter** of PTB for information on the PTB DSR system and **Dr Keith Emery** of NREL for advice on signal detection system

## References

- 1. Calibration of Solar Cells 1. the differential spectral responsivity method, J Mozdorf, Appl. Optics, 28(9), 1701-1727,1987
- Primary reference cell calibration at the PTB based on improved DSR facility, S Winter, T Wittchen and J Metzdorf, 16<sup>th</sup> European Photovoltaic Solar Energy Conf. Glasgow 2000
- Uncertainty Analysis of Certified Photovoltaic Measurement at NREL, Technical Report NREL/TP-520-45299 Keith Emery, 2009

# THANK YOU!