20 Sep 2011, Newrad 2011

Fiber-Coupled Cryogenic Radiometer with Carbon Nanotube Absorber

J.H. Lehman

National Institute of Standards and Technology 325 Broadway, Boulder, Colorado 80305-3228 Iehman@boulder.nist.gov

David Livigni, Nathan Tomlin, Christopher L. Cromer National Institute of Standards and Technology, Boulder, Colorado, U.S.A.

Chris Chunnilall, Theo Theocharous National Physical Laboratory, Teddington, Middlesex, U.K.

Where

Physical Measurement Laboratory Quantum Electronics and Photonics Division Sources and Detectors Group Laser Radiometry Project (11 people)

Laser Power Meter Calibration Services (10 % of NIST by income)

The next generation of detectors for laser power and energy measurements traceable to NIST

Motivation

Motivation

Absolute and Spectral Responsivity

λ

J. H. Lehman, C. M. Wang, M. L. Dowell, and J. A. Hadler, *Journal of Research of the National Institute of Standards and Technology*, **114**, 287-291, 2009.

Transfer Standards

4x Trap detectors

J. H. Lehman and C. L. Cromer, Appl. Opt., 41, 6531-6536, 2002.

Cryogenic Radiometer

Goal: all-fiber coupling to test and standard detectors

Dilution fridge, micromachining and carbon nanotubes

Micromachined components

cm

Deep Reactive Ion Etch (DRIE)

centering ring for fiber

cavity ends and witness

Reflectance Results

See also OPM_OR_001

Cavity assembly

Measurement setup

Results

(Values of power shown are nominal)

Optical/Electricial Results Summary

Optical/Electricial Results Summary

Optical/Electricial Results Summary

Power law fits for conductance modes and inequivalence T³ insulator (phonon) - no T¹ metal (electron) -yes Demonstrated first nanoWatt Radiometer for Fiber Measurements

Micromachining and carbon nanotubes

Electrical is slightly more efficient linear (but uncertainties are high)

Next iteration, shorter time constant

Reduce inequivalence, evaluate uncertainties, improve optical coupling

Results

CNTs on detectors

laser radiometry

w/ E. Grossman

Approximate Power (nW)	Optical Power		Electrical Power	
	Responsivity (nW/K)	1/e Time Constant (minutes)	Responsivity (nW/K)	1/e Time Constant (minutes)
1	n/a	n/a	149	12.4
3	154	12.7	149	13.3
10	160	12.1	153	12.9
30	160	13.9	150	13.8
100	164	15	152	15.4
	U = 4.55 % (k=2)		U = 3 % (k=2)	

(OFPM type B) (thermistor type B)

Measured responsivity and time constant for optical and electrical power injections. (n/a - not available due to bad curve fit.)