Integrating Sphere Photometers Designed for Solid State Lighting Measurement

<u>Seongchong Park</u>, Dong-Hoon Lee, Seung-Nam Park Korea Research Institute of Standards and Science (KRISS)

NEWRAD 20 Sept 2011, Hawaii

Outline

- Motivation
- Problems to be solved
 - Self-screening effect for a large area light source
 - Spatial mismatch error for a directive light source
- Method of numerical experiment
- Results for self-screening correction
- Results for spatial mismatch-free design
- Summary

Motivation

- Total luminous flux
 - measurand for luminous efficacy (lm/W)
 - key quantity for energy efficiency
- Solid state lighting (SSL) products
 - spatially directive sources
 - flat surface-emitting sources
- Integrating sphere (IS) photometer vs.
 Gonio-photometer
 - cost effective
 - fast measurement
 - reference standard required
 - specific errors to be corrected

Questions

1. Can we use an IS photometer for measuring a large-area surface-emitting source? (but please quick and easy...)

Is there no way to remove the "troublesome" procedure of spatial mismatch correction for a highly directive light source?

IS Photometer

$$\Phi_v^T = \frac{y^T}{y^R} \Phi_v^R k_{CCF} k_{SCF} k_{abs}$$

$$k_{abs} = \frac{y^{RA}}{y^{TA}}$$

- spectral mismatch correction (*k*_{CCF})
- spatial mismatch correction (k_{SCF})
- self-absorption correction (k_{abs})

Spatial Mismatch Error

- Accurate correction possible <u>only if</u> the following information available:
 - spatial response distribution function (SRDF) of the IS photometer
 - angular distribution of the test source

Self-Screening Effect

- Additional error for a large-area (surface-emitting) source
- Test source acts as a low-reflectance baffle
 - \rightarrow change of radiation transfer pattern
 - \rightarrow change of the IS response

Numerical Experiment

Radiative Transfer Equation

$$E_i(\mathbf{r}) = \frac{1}{\pi} \iint_{w,b1,b2} \rho(\mathbf{r}') E_{i-1}(\mathbf{r}') S(\mathbf{r},\mathbf{r}') T(\mathbf{r},\mathbf{r}') dA', \quad E(\mathbf{r}) = \sum_{i=0}^{\infty} E_i(\mathbf{r}).$$

- $\bullet \mathbf{r}, \mathbf{r}' \in w, b_1, b_2$
- Screening function, $S(\mathbf{r}, \mathbf{r'})$
 - fully screened, $S(\mathbf{r}, \mathbf{r'}) = 0$
 - fully unscreened, $S(\mathbf{r}, \mathbf{r'}) = 1$
 - partially screened, $0 < S(\mathbf{r}, \mathbf{r'}) < 1$
- **Transfer function**, $T(\mathbf{r}, \mathbf{r}')$

Y. Ohno, Applied Optics 33, 2637 (1994)

Numerical Experiment

- ► Commercial ray-tracing simulator (LightToolsTM)
 - based on Monte-Carlo Method
 - applicable to non-Lambertian surface.
 - no limits on internal structures. e.g. baffles, openings
- Direct Integration by iteration method (home-made)
 - vectorized codes in MATLAB[™]
 - equal-area mesh generation: up to 5000 elements
 - partial screening effect handling by taking additional sub-meshes
 - procedures:
 - 1. mesh generation (5000 elements, 1 s for a AMD64 PC)
 - 2. screening and transfer function calculation (5000 elements, 3 min.)
 - 3. iteration (5000 elements, 30 s) to get $E(\mathbf{r})$
 - 4. if necessary, repetition of step 3 for other calculation points ${\bf r}$

Results for Self-Screening Correction

S. Park et al., Applied Optics 49, 3831 (2010)

Idea

- Main Idea: match the spatial distribution of <u>auxiliary lamp</u> to that of the test lamp
 - usually 2π half-sphere illumination for surface-emitting sources
 - easy to realize
 - no influence on other conditions
- Self-absorption correction automatically corrects the selfscreening effect
 - proved by numerical experiment

Simulation Design

Dimension of IS under experiment

KR

Angular distribution of auxiliary lamp

Self-Screening Correction Results

Relative residual error of total luminous flux as a function of the diameter of a SLS– DUT for the case that the self-screening correction is applied using one auxiliary lamp with the angular distribution of (a) $\cos \theta$, (b) $\cos^2 \theta$, (c) $\cos^5 \theta$, and (d) $\cos^{12} \theta$.

KRISS Korea Research Institute of Standards and

Self–Screening Correction Results

Comparison of the relative residual errors after self-screening correction between the case using a 2π REF (black circles) and the case using a 4π REF (red squares)

Error as a function of the diameter of a SLS-DUT after the self-screening correction using one $\cos \theta$ auxiliary lamp for different values of the reflectance of the front/rear surface of the SLS-DUT.

Korea Researc

Self-Screening Correction Results

Error for different values of (a) distance d of the baffle from the SLS-DUT, and (b) diameter D_B of the baffle.

KR

Error due to self-screening corrected to < 2 %

Error for using one, two, and four auxiliary lamp(s) with the $\cos \theta$ distribution.

Proof Experiment (on-going)

P

Test source consisting of 17 white LEDs (40 mA) in series mounted on a 1 m x 1 m frame. The sum of TLF was approximately 125 lm.

KR

Test source mounted inside the 2 m IS photometer.

Screening of the test source to investigate the selfscreening effect of a surfaceemitting source.

(New Ø 2 m IS photometer to be installed in Oct 2011)

Results for Spatial Mismatch-free Design

S. Park et al., Applied Optics 50, 2220 (2011)

Multiple Lamp Socket

 Idea #1: mount multiple test sources to make a uniform distribution of test lamp → Multi-LED socket

Spatial mismatch error reduced to < 1 %

KR

Irradiance distribution and SCF for different angular patterns of test LEDs

S. Park et al., CIE session 2011

Multi-port Design

Idea #2: install mutiple detectors to make a uniform response of the IS photometer → a universal solution!

Single-port vs. 6-port SRDF calculated by numerical simulation with $\rho = 95$ %, R = 0.75 m, $R_b = (1/4) \times R$, $R_w = 0.025$ m, $D = (2/3) \times R$, and $D_L = 0$.

Spatial Correction Factor

1.005 1.05 (a) cos¹ (f) cos¹ scf 9º 0.95 0.995 27° 36° 45° (b) cos² (g) cos² (c) cos⁵ (h) \cos^5 (d) cos¹² (i) cos¹² (e) cos⁶⁰ (j) cos⁶⁰ 60 0 120 180 Polar angle (Deg.)

Spatial mismatch error reduced to < 0.5 %

Single-port vs. 6-port SCF for different angular distributions of a test source.

Sandards and Science

Parameter Dependence

SCF dependence on baffle position *D* (*R* is the radius of the sphere.)

Parameter Dependence

KR

position D_L . (*R* is the radius of the sphere.)

Effect of Contamination

SCF error due to ρ difference between upper and lower hemisphere.

SCF error after correction based on approximation: $K(\theta, \phi) \propto \rho_{1st}(\theta, \phi)$

Realization Concept

• Only P* used for self-absorption correction

KRISS 6-port IS Photometer

KRISS Korea Research Institute of Standards and Science

(to be installed in Oct 2011)

Summary

- Modification of the auxiliary lamp → correction of selfscreening effect for a large-area light source
- Multi-LED socket \rightarrow spatial mismatch compensated
- Multi-port IS design → spatial mismatch-free measurement of directive light sources
- Validity of the designs tested by numerical experiment based on the radiation transfer equation
- IS photometers have a good chance also for SSL products.