

LED near-field goniophotometer at PTB

M. López^{1*}, K. Bredemeier², N. Rohrbeck³, C. Véron³, F. Schmidt² and A. Sperling¹

¹Physikalisch-Technische Bundesanstalt (PTB), Germany ²TechnoTeam Bildverarbeitung GmbH, Germany ³ZETT OPTICS GmbH, Germany

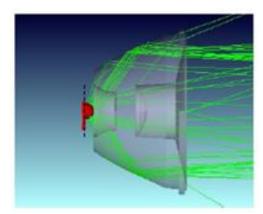
*marco.lopez@ptb.de

19-23 Sept. NEWRAD 2011, Maui, Hawaii.

Motivation

- Far- and near-field distributions
- Measurement procedure
- Setup (Near-field goniophotometer)

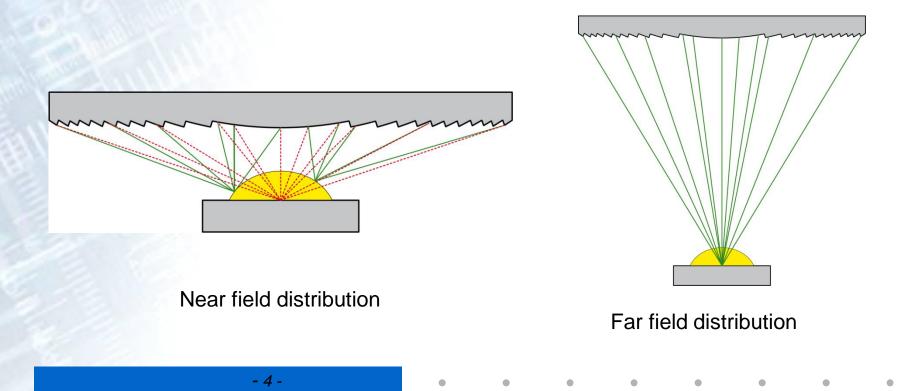
- Results
- Summary and future works


- 2 -

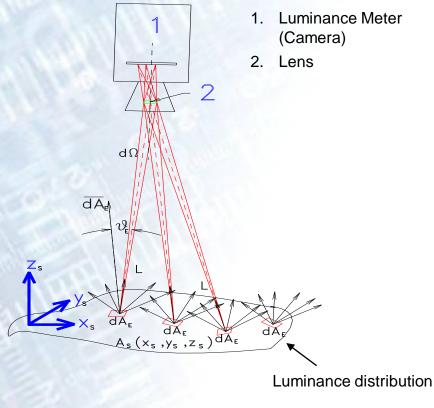
• • Motivation

- LEDs are employed today in a great variety of applications:
 - \Rightarrow Lighting, Traffic signal, Automotive, Medical lighting, etc.
- The small size of the LEDs allows to design high quality of lighting systems by using optical design software.
- For optical simulations, the complete distribution of the optical radiation of a light source is required (near-field model).
- Traceability of near-field goniophotometric measurements is still missing!!

- 3 -

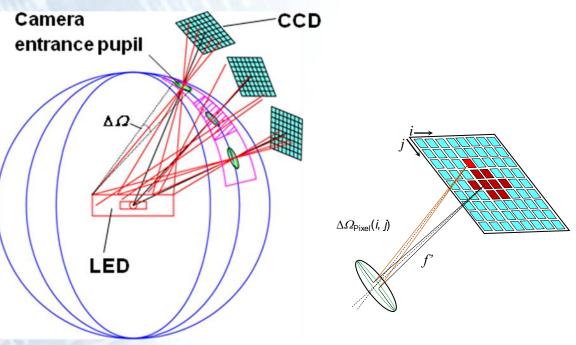


Comparison of a near- and a far- field distribution



- The abstraction of a light source, e.g. a LED, as a point source causes errors in the simulation by designing optical devices
- These errors are relevant when the optic element is placed near to the LED, e.g.
 - by the design of refractive and diffractive optic elements, fiber optic coupling systems, etc.

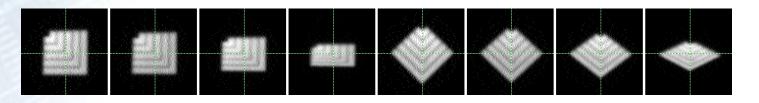
Near-field goniophotometer


- 5 -

 $L_{\nu}(\mathcal{G}_{\rm E},\varphi_{\rm E}) = \frac{\mathrm{d}\,\mathcal{\Phi}_{\nu}}{\mathrm{d}A_{E}\cdot\cos\mathcal{G}_{\rm E}\cdot\mathrm{d}\,\mathcal{\Omega}(\mathcal{G}_{\rm E},\varphi_{\rm E})} \qquad [\rm cd/m^2]$

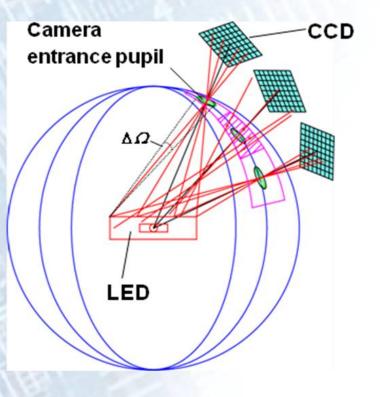
A near-field goniophotometer measures the luminance distribution of a light source from all light-emitting directions by using a luminance camera.

Principle of a near-field goniophotometric measurement

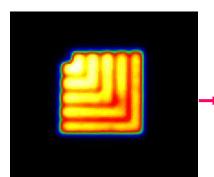

- 6 -

 A luminance measuring camera (CCD) is moved around the measuring object carrying out several luminance images

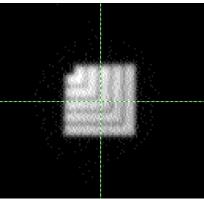
$$L_i(x_D, y_D, z_D, \theta_C, \varphi_C)$$


- Pixels of the CCD sensor can be regarded as small single sensors
- Area of each pixel represents a very small solid angle $\Delta \Omega(i,j)$
- Luminous flux captured by a pixel can be calculated as:

 $\Delta \Phi_{ij}(x, y, z, \vartheta, \varphi) = L(x, y, z, \vartheta, \varphi) \cdot \Delta \Omega_j(\vartheta, \varphi) \cdot \cos \vartheta \cdot \Delta A_i(x, y, z)$



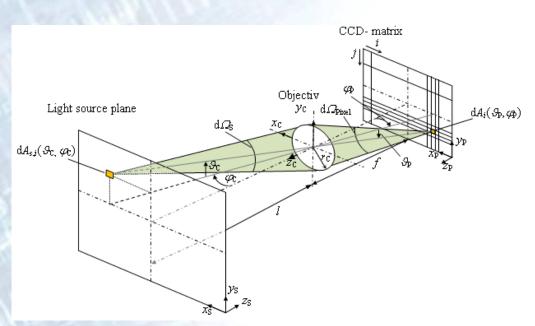
Near-field Goniophotometer

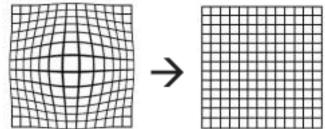

Luminance image

Luminance values to luminouse flux portions

 $\Delta \Phi(i,j) =$ $L(i, j) \cdot c \cdot \Delta \Omega(i, j)$

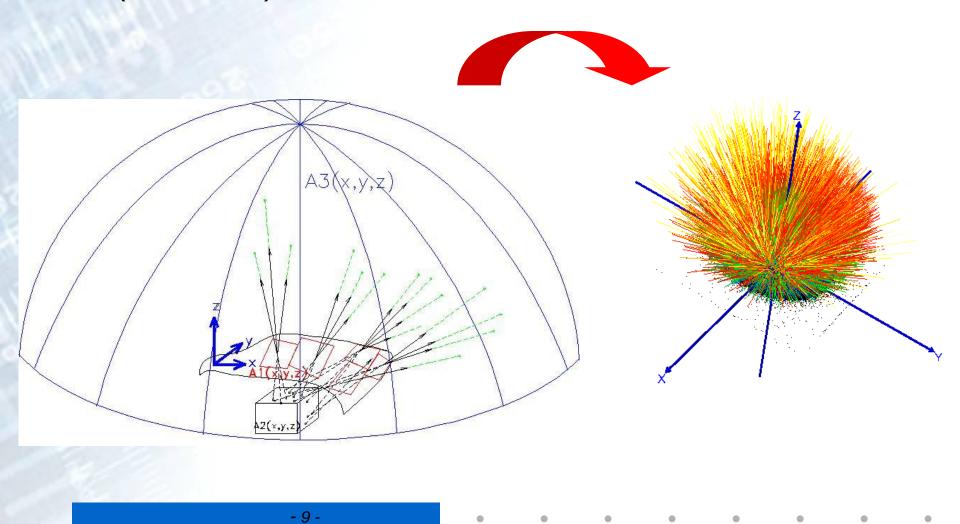
Extracted rays (23000 rays per image)


- Multiplication of each luminance pixel with is corresponding solid angle
- Extraction of rays (compression to approx. 23000 per image)


- 7 -

Calculation of "ray data"

• With the exact knowledge of the optical imaging system (lens) the "direction of light" from each pixel can be calculated.


$\mathcal{G}_{C}(i, j) = \arctan\left(\frac{\sqrt{x^{2} + y^{2}}}{f'}\right) = \arctan\left(\frac{\sqrt{(i \cdot \Delta x_{\text{Pixel}})^{2} + (j \cdot \Delta y_{\text{Pixel}})^{2}}}{F}\right)$ $\varphi_{C}(i, j) = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{j \cdot \Delta y_{\text{Pixel}}}{i \cdot \Delta x_{\text{Pixel}}}\right)$

- 8 -

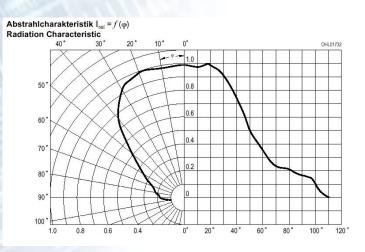
Objective distortion must be corrected!

Forward tracing of vectors calculated at the addendum envelopes A1 to A3 (green dashed) or back tracing at the real surface A2 (black dashed)

Luminous intensity and luminous flux obtained from the luminance measurement

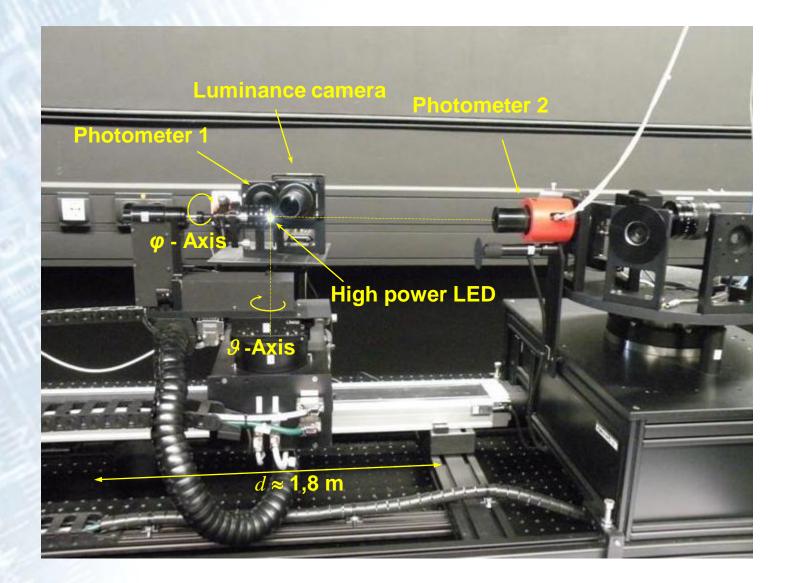
Luminous intensity distributions:

 $I(\vartheta_{S},\varphi_{S}) = \int_{A} L(x_{S}, y_{S}, z_{S}, \vartheta_{S}, \varphi_{S}) dA_{P}$ $I(\vartheta_{k},\varphi_{l}) = \frac{\sum_{x,y,z} \Delta \Phi(x_{S}, y_{S}, z_{S}, \vartheta_{S}, \varphi_{S})}{\Delta \Omega(\vartheta_{k}, \varphi_{l})} \quad \forall \, \vartheta_{S}, \varphi_{S} \in \Delta \Omega(\vartheta_{k}, \varphi_{l})$


Total luminous flux:

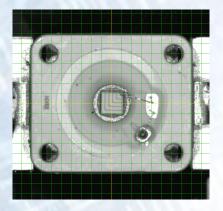
$$\Phi = \iint_{A,\Omega} L(x, y, z, \vartheta, \varphi) \cdot dA \cdot \cos \vartheta \cdot d\Omega$$

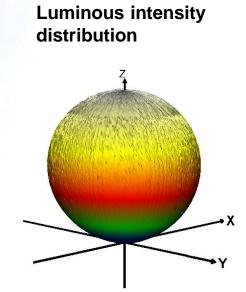
$$\boldsymbol{\varPhi} = \sum_{\boldsymbol{x}_{\mathrm{S}}, \boldsymbol{y}_{\mathrm{S}}, \boldsymbol{z}_{\mathrm{S}}} \sum_{\boldsymbol{\vartheta}_{\mathrm{S}}, \boldsymbol{\varphi}_{\mathrm{S}}} \Delta \boldsymbol{\varPhi}(\boldsymbol{x}_{\mathrm{S}}, \boldsymbol{y}_{\mathrm{S}}, \boldsymbol{z}_{\mathrm{S}}, \boldsymbol{\vartheta}_{\mathrm{S}}, \boldsymbol{\varphi}_{\mathrm{S}})$$


All rays going in one direction (solid angle) are summed up (discrete notation).

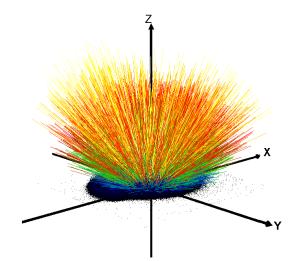
- 10 -

• LED Far- and near- field goniophotometer at PTB

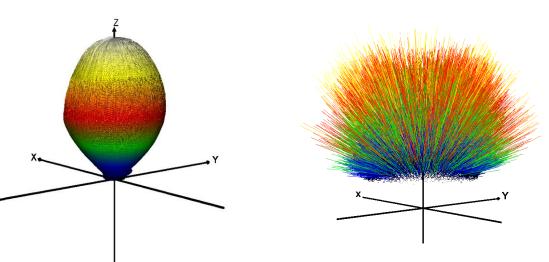



- 11 -

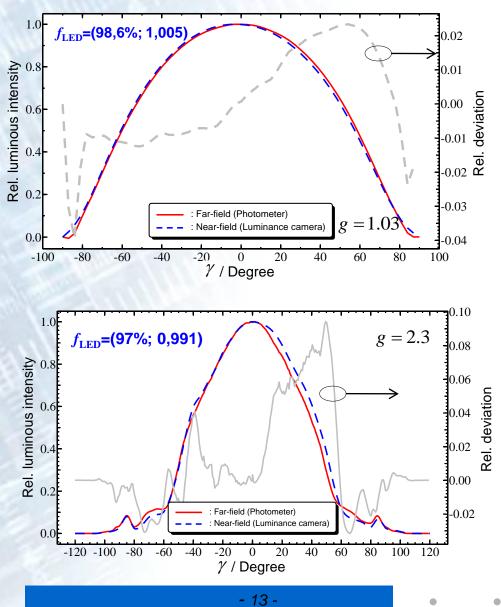
Luminous intensity distribution from "Ray-Data"



Camera picture



Rays distribution representation



- 12 -

Comparison of luminous intensity distributions (Far- and Near- field)

*) Quality indices:

$$f_{LED} = (f_{distribution, fit}; f_{flux, fit}) \xrightarrow{Identical distributions} (100\%; 1)$$

$$f_{distribution, fit} = 100 \cdot \left(1 - \frac{\sum_{C=0^{\circ}\gamma=0^{\circ}}^{360^{\circ}} \sum_{\gamma=0^{\circ}}^{180^{\circ}} (I_{1}(C,\gamma) - I_{2}(C,\gamma))^{2}}{\sum_{C=0^{\circ}\gamma=0^{\circ}}^{360^{\circ}} \sum_{\gamma=0^{\circ}}^{180^{\circ}} (I_{1}(C,\gamma) + I_{2}(C,\gamma))^{2}} \right)$$

$$f_{flux,fit} = \frac{V,I}{\Phi_{V,2}}$$

 $I_1(C,\gamma), I_2(C,\gamma)$: Luminous intensity distribution 1 and 2 at angle (C,γ) .

 $\Phi_{\rm V,1}, \Phi_{\rm V,2}$: Luminous flux calculated from distribution 1 and 2.

Lambertian emitter:

$$I_V(\mathcal{G}) = I_0 \cdot Cos^g(\mathcal{G})$$

*) Bergen, A.S.J., "A practical method of comparing luminous intensity distributions", CIE 27th Session, Sun City South Africa,

Summary and future works

Summary:

- The near-field goniophotometer setup established at PTB to measure LEDs under near-field conditions has been presented.
- The values of the luminous intensity distribution of two LEDs obtained by nearfield measurements were compared to goniophotometric measurements carried out separately under far-field conditions using a photometer. The maximal average deviation obtained is ≤ 4%.

Future works:

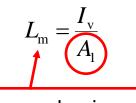
- Evaluation of the measurement uncertainty (Model).
- Development of transfer standards for near-field measurements.
- Ray-data depending on the wavelength.

- 14 -

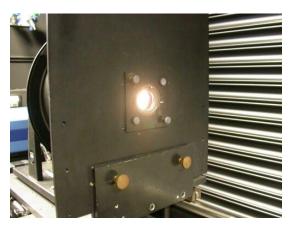
• Comparing ray-data?

...Thank you for your attention

- 15 -

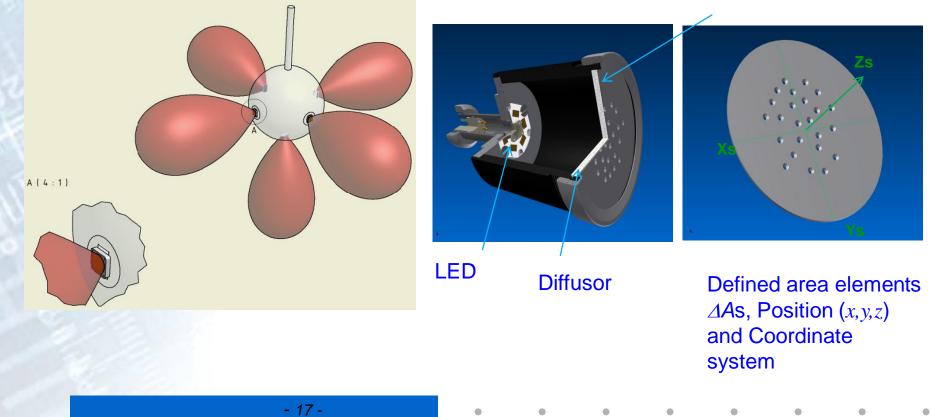

•

• Traceability of the Luminance


a) by means of the luminous intensity and a reference aperture A₁

Average luminance on the aperture area

Unit: cd/m²



$$I_{v,i}(T_{v,i}) = \frac{d^2}{\Omega_0} \cdot \frac{y_i}{s_{v,N}} \cdot F(T)$$

PIB

- Transfer standard for the luminous intensity distribution
- Transfer standard for the starting position of the ray data

Reference mask with precision apertures

