

Luminous Efficacy Measurement Setup for Solid-State Lamps

- T. Poikonen¹, T. Pulli¹, A. Vaskuri¹, H. Baumgartner¹, P. Kärhä^{1,2}, and E. Ikonen^{1,2}
 - ¹Metrology Research Insitute, Aalto University, Espoo, Finland
- ²Centre for Metrology and Accreditation (MIKES), Espoo, Finland

Table of contents

- Introduction
- Measurement setup

 Integrating sphere
 Goniospectrometer
- Test measurements

 Combined measurement results
 Spectral self-absorption
 Angular characterizations
- Conclusions

Introduction

- Luminous efficacy [lm/W], energy efficiency of light sources
- Solid-State Lamps (SSLs)

-E27 retrofit SSLs work with AC-voltage (230 / 110 V RMS) -Consist of LEDs, built-in power supply, heatsink, optics -Complicated optical and electrical properties

Integrating sphere setup

Luminous flux & Electrical power measurement

Goniospectrometer

Relative angular and spectral characterization

- Luminous intensity distribution of SSL -> <u>Spatial correction</u>
 -Spatial Responsivity Distribution Function (SRDF) of sphere is needed
- Spectral irradiance as a function of angle of observation

Test measurements

- 25 E27-base SSLs were measured after 100-h burn-in
- 23 C ambient temperature of room, 230 V, 50 Hz AC-voltage
- Lamps were allowed to stabilize 1–3 hours
- Luminous efficacy, spectral radiant flux, angular measurements
- Waveforms of luminous flux and electrical current

Combined measurement results

• Large differences between SSLs were found:

_	Luminous efficacy:	25 – 68 lm/W
_	¹ Ripple of luminous flux:	0.06 - 105 % (typically 100 Hz)
_	Power factor:	0.35 – 0.95
—	² THD of current:	30 – 280 %

- 5 lamps fully pulsed, 9 lamps with <10 % of ripple
- Large differences in the qualities of the built-in electronics
- Lamps with >200 % THD problematic in power measurements

¹ Ripple was analyzed as the maximum deviation of the flux from its mean value ² THD = Total harmonic distortion, determined with Fast Fourier Transform method (FFT)

Waveforms of SSLs

- Luminous efficacy: 33.2 lm/W
- Ripple of flux: 2.6 %
- Power factor: 0.72
- THD of current: 90 %

- Luminous efficacy: 53.9 lm/W
- Ripple of flux: 31.4 %
- Power factor: 0.70
- THD of current: 72.2 %

Spectral self-absorption

- Contribution to luminous efficacy small & less than 17 K in CCT
- May have significant contribution with small integrating spheres

Angular characterization

Luminous intensity distribution

-Type of SSL: Spot -Spatial correction: 1.013

- -Type of SSL: Bulb -Spatial correction: 1.001
- Spatial correction is <u>needed for both types of SSLs</u>

Angular characterization Spatial responsivity distribution function (SRDF)

• SRDF of the integrating sphere scanned using an LED-scanner

Angular characterization

Spectral irradiance as a function of angle of observation

Angular characterization

Spectral irradiance as a function of angle of observation

Angular characterization Temperature variation of SSL

• Typical temperature variation in the goniometer measurement ±0.5 C

Conclusions

- Test-measurements were conducted for 25 SSLs
- Large differences were found between lamps
- Expanded uncertainty of luminous efficacy measurement is
 1.2 % (k = 2) for a typical SSL with stable electronics
- All SSLs available cannot be measured with low uncertainty due to problematic built-in power supplies

Questions?

