The 11<sup>th</sup> International Conference on New Developments and Applications in Optical Radiometry September 19-23, 2011, Maui, Hawaii, USA



### New Method for Spectral Irradiance and Radiance Responsivity Calibration using Pulsed Tunable Lasers

Yuqin Zong Steven Brown, George Eppeldauer, Keith Lykke, and Yoshi Ohno

> National Institute of Standards and Technology Gaithersburg, Maryland USA



# **Continuous wave (CW) tunable lasers**

- high power,
- narrow bandwidth,
- Being used for calibrations of primary detectors and remote sensing instruments

### Shortcomings:

- bulky
- expensive
- interference fringes
- hard to operate and maintain



## **Pulsed tunable lasers**

- Fully automated
- Large tunable range
- Finite bandwidth, no or less interference fringes
- portable,
- affordable.
- Narrow pulse width, extremely low duty cycle (eg, 10<sup>-6</sup>)
- Pulse to pulse variation, and hard to be stabilized.
- Transimpedence amplifiers don't work well.

### Have not been used as calibration source yet!



# Key questions to be answered

- Can pulse lasers be used for calibration of detectors with small uncertainties?
- How to overcome fluctuation of a pulsed laser and get repeatable results?
- Will detectors be saturated?
- Is a pulse laser equivalent a CW laser for detector calibrations?



# Schematic of the new measurement method





#### The OPO laser



- 210 nm to 2400 nm tunable range,
- 1000 Hz repetitive rate
- 5 ns pulse width
- $5-8 \text{ cm}^{-1}$  bandwidth

NĽ

#### **Pulse waveform**





#### Laser spectrum





#### The electrometer





- Charge measurement function from 2 nC to 2 μC
- High performance multichannel switching card
- < 3 fA bias current</p>
- $< 20 \ \mu V$  burden voltage
- No accurate timing and switching

With a switched integrator transimpedance amplifier

$$Q = \int_0^T i(t)dt = C \times V$$



#### **Measurement timing**





#### **Measurement repeatability**



Measurement No., i

- Two S2281 Si photodiodes (PD)
- standard deviation = 7 ppm!
- One 3 Si PD trap and one S2281 Si PD
- standard deviation = **12** ppm!

### Linearity measurement





#### **Result of detector linearity test**



Averaged photocurrent, / (A)

The relative responsivity is obtained by normalizing the charge ratio  $r(P_i)$  of the test detector to reference detector .



- Nonlinearity depends on the detector and the laser wavelength.
- 2) The instantaneous photocurrent without causing nonlinearity is several orders of magnitude higher than the threshold nonlinear DC photocurrent (0.1 1 mA typically).
- 3) The level of allowed averaged photocurrent is several orders of magnitude lower than the threshold nonlinear DC photocurrent.



### Validation results using CW lasers



Difference in measured responsivity is only ≈ 0.02 %, well within the instruments' uncertainty (0.05 %).

### Uncertainties

|                                         | Relative standard unc. (%) |        |
|-----------------------------------------|----------------------------|--------|
| Uncertainty component                   | Type A                     | Type B |
| Reference trap detector                 |                            | 0.028  |
| Laser wavelength (0.01 nm)              | 0.005                      |        |
| Sphere source irradiance uniformity     |                            | 0.005  |
| Detector reference plane                |                            | 0.010  |
| Detector linearity                      |                            | 0.005  |
| Transfer to test detector               | 0.005                      |        |
| Electrometer (relative only)            |                            | 0.01   |
| Combined uncertainty (%)                | 0.033                      |        |
| Expanded uncertainty ( <i>k</i> =2) (%) | 0.066                      |        |



## Conclusions

- A new method using pulsed laser sources has been developed for calibration of detectors and instruments.
- The method has been validated and found to be equivalent to CW laser method.
- The averaged photocurrent should be kept several orders of magnitude lower than the threshold nonlinear DC photocurrent to avoid nonlinearity.
- Pulsed laser sources have advantage over CW lasers in reducing interference fringes.



- This method can be used in other applications such as measurement of material property of transmittance and reflectance.
- Compared to a monochromotor-based system, calibration uncertainties are significantly lower (eg, one order of magnitude).



# **THANK YOU**

