

# Development of new-generation transfer-standard pyroelectric radiometers for monochromator use

G. P. Eppeldauer, J. Zeng, and L. M. Hanssen National Institute of Standards and Technology Gaithersburg, Maryland, USA

NEWRAD 2011

## Outline

- Introduction
- Previously developed pyroelectric detectors
- Recent low-NEP pyroelectric radiometer developments
  - Single element
  - Trap
  - Characteristics
- Pyro tests with monochromator and circular-variable-filter
- Pyro spectral responses
- Conclusions

## Introduction

- There are no room-temperature detectors available with low enough NEP to measure less than 1  $\mu$ W power levels in the IR.
- Radiometers with NEP close to 1 nW/Hz<sup>1/2</sup> are needed for spectral responsivity scale extension with monochromators.
- Monochromators can perform routine (fast) spectral responsivity measurements in the IR only with low-NEP detectors.
- The NIST cryogenic radiometer and IR-SIRCUS calibrations are too slow and very expensive to cover the IR range.

#### **Previously developed pyroelectric detectors**

- The earlier developed pyroelectric transfer standard detectors have too high NEPs for monochromator use.
- The previously developed trap-pyro using LiNbO<sub>3</sub> crystal has NEP=80 nW ( $\tau$ =2 s). <u>Advantage to keep</u>: It can accept f/4 beam to match the input geometry to the monochromator. Because of multiple reflections between detector and dome, most of the incident radiation is absorbed by the detector-coating. The high absorption makes it possible to smooth out the structures from the spectral responsivity curve.
- The previous pyros need laser sources to obtain high signal-to-noise ratios.

Previous generation LiNbO<sub>3</sub> trap-pyro





## Low-NEP pyroelectric radiometer developments (Goal of the project)

- Develop temperature stabilized pyroelectric radiometers (with improved geometry and characteristics) that can extend the NIST spectral responsivity scale to the IR (to  $25 \mu m$ )
- They are more user friendly than the earlier developed cryogenic bolometers
  - The relative spectral responsivity can be determined for the IR using the NIST FT spectrometer
- They can be used as transfer and working standards <u>with</u> <u>monochromators</u>:
  - with large and spatially uniform area,
  - decreased NEP (increased responsivity and decreased noise-amplification)
  - high and constant signal-gain versus frequency
  - with multiple input reflections (using dome-traps)
- Target uncertainty: 1 % (k=1) to  $18 \mu m$  and 2.5 % (k=1) to  $25 \mu m$

#### **Reducing NEP of pyroelectric radiometers**

- Develop custom-made pyroelectric radiometers
- Chose 3 to 5 mm diameter detectors
- Apply frequency-compensation with the black-coating
- Decrease the feedback stray capacitance to 0.2 pF
- Increase the feedback resistor to  $10 \text{ G}\Omega$
- Decrease the crystal thickness to increase responsivity
- Select the best (lowest NEP) detectors
- Decrease noise amplification using small detectors with low detector-capacitance
- Decrease electrical bandwidth

#### 5 mm single-element low-NEP hybrid pyroelectric radiometer with temperature-control



0.07 #2 - #1 0.06 0.05 0.04 0.03 0.02 0.01 12 2 14 10 Wavelength (µm)

Results SDX1005 #1 2 Refl

<u>Hybrid:</u> the detector crystal and the pre-amplifier are in the same can. (fabrication by Gentec E.O. USA)

The structures of the FT measured spectral reflectance curve is caused by the organic-black coating!

#### **Responsivity increase of single-element pyros** with decreased thickness of crystal (LiTaO<sub>3</sub>)

| Hybrid<br>detector # | Coating | Size<br>mm dia. | Thickness<br>(µm) | 3 dB rolloff<br>(Hz) | Responsivity<br>(V/W) |
|----------------------|---------|-----------------|-------------------|----------------------|-----------------------|
| 2                    | OB      | 5               | 100               | 100                  | 5059<br>(785 nm)      |
| 3                    | OB      | 5               | 50                | 109                  | 16985<br>(1.32 μm)    |
| 5                    | OB      | 3               | 50                | 60                   | 16352<br>(1.32 μm)    |
| 6                    | OB      | 3               | 25                | 128                  | 35879<br>(1.32 μm)    |

OB: Organic Black

#### The NEP has decreased to $\sim 1 \text{ nW/Hz}^{1/2}$

#### Spectral responsivity of previously developed dome-input and newly developed single-element pyroelectric radiometers

Single-element low-NEP pyros:

Previously developed (high-NEP) dome-pyro:



2 % structure (jump) at ~9  $\mu$ m

The dome minimizes the structures!

#### **Design of the low-NEP dome-input pyroelectric trap-detector**



#### **Reflecting domes**



Gold-plated PYREX hemi-sphere (previously used)

Gold-plated metal hemisphere (used recently)

#### A group of low-NEP dome-input pyroelectric radiometers



The NEP of the prototype is  $\sim 8 \text{ nW}$  ( $\tau=1s$ ) Reason of NEP increase: The large capacitance of the thinner and larger crystal increased the noise amplification.

## Frequency dependent responses of low-NEP prototype-dome and single-element pyros



#### Spatial non-uniformity of prototype dome-trap pyroelectric radiometer at 5 μm



#### **Test results of 3 pyroelectric transfer standards**

#### Comparison of the main characteristics

|                                         | Low-NEP dome-trap<br>prototype | High-NEP<br>(previously made)<br>dome-trap | Single-element<br>(hybrid) detector |
|-----------------------------------------|--------------------------------|--------------------------------------------|-------------------------------------|
| Freq 3 dB roll-off<br>[Hz]              | 49                             | 75                                         | 120                                 |
| NEP<br>[nW/shown bandwidth]             | $8 (\tau = 1 s)$               | 76 ( $\tau = 2 s$ )                        | 2 ( $\tau = 1 s$ )                  |
| Resp @ 785 nm<br>[V/W]                  | 1.43 x 10 <sup>4</sup>         | 325.1                                      | 5.06 x 10 <sup>3</sup>              |
| Resp @ 4.97 μm<br>[V/W]                 | 1.45 x 10 <sup>4</sup>         | 324.6                                      | 5.07 x 10 <sup>3</sup>              |
| Resp @ 10.6 μm<br>[V/W]                 | 1.47 x 10 <sup>4</sup>         | 324.5                                      | 5.00 x 10 <sup>3</sup>              |
| Fixed feedback resistor<br>of amplifier | 10 GΩ                          | 1 GΩ                                       | 10 GΩ                               |

#### Example for spectral comparison of dome pyros at the Circular-Variable-Filter Spectrometer



## Single-element pyro reflectance (from FT Spectrometer) and signal-ratio of dome-pyro-prototype to single-element pyro (using FT)



The good agreement of the two curve shapes demonstrates the good spectral uniformity of the dome-pyro prototype.

#### Spectral responsivity of the low-NEP dome-pyro (prototype) when calibrated against the

high-NEP (previously made) dome-pyro and the single-element pyro



The 2 % spectral structure in the responsivity of the singleelement detector cannot be seen in the dome-pyro responsivity curves. The difference between the responsivity from the two different calibrations is about 0.5 % at the short wavelengthend (caused by the difference in the input geometries between the domed and single-element inputs at calibrations ).

#### **Increase of monochromator throughput for the IR**

Switching monochromators from f/8 to f/4 resulted in a 10 x increase in the throughput





#### f/4 monochromator-based relative spectral response calibration of a low-NEP single-element pyro against a low-NEP single-element reference-pyro



The low STDs of the ratios show that the signal-to-noise ratios are large enough in the overall spectral range (between 1.5  $\mu$ m and 14  $\mu$ m) and spectral responsivities can be continuously determined.

- The standard deviation of the mean was calculated from 16 data points versus wavelength
- The ratio of a 5-mm pyro-hybrid (test detector) to the 5-mm pyro-hybrid reference detector gives the relative response which is to be multiplied by the absolute responsivity of the reference detector to obtain the spectral power responsivity of the test detector.

## Conclusions

- 1. Development of low-NEP pyroelectric single-element radiometers with temperature control has been done.
- 2. A prototype low-NEP dome-trap pyroelectric-radiometer with temperature-control has been developed. The NEP=8 nW( $\tau$ =1s), factor of 14 lower than before.
- 3. Based on the prototype, a group of low-NEP dome-trap pyroelectricradiometers have been fabricated.
- 4. The f/8 monochromator has been replaced with an f/4. Now, the throughput is 10 x higher.
- 5. The spectral responsivity measurements now can be performed to 14  $\mu$ m using the 2 nW ( $\tau = 1$  s) low-NEP pyros.
- 6. It has been demonstrated that infrared spectral response measurements can be performed at the output of a regular monochromator with low measurement uncertainty.
- 7. Future work: finalize the IR responsivity scale to  $25 \mu m$ .