Tungsten Filament Lamps as Absolute Radiometric Reference Sources Petri Kärhä^{1,2}, Maija Ojanen^{1,2}, Saulius Nevas³, Armin Sperling³, Henrik Mäntynen¹ and Erkki Ikonen^{1,2} ¹Aalto University, Metrology Research Institute, Espoo, Finland ²Centre for Metrology and Accreditation (MIKES), Espoo, Finland ³Physicalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany #### Quartz Tungsten Halogen (QTH) Lamps - Widely used as transfer standards of spectral irradiance - FEL & DXW type lamps most common - Planckian radiators with a few corrections ## Spectral Irradiance of QTH Lamp Modified Planck's radiation law - B(T) is a geometrical factor of the measurement, slightly affected by T due to thermal expansion - $\varepsilon_W(\lambda, T)$ is the spectral emissivity of tungsten - $\varepsilon_{\Delta}(\lambda, T)$ is a residual correction due to other minor contributing factors - M. Ojanen, P. Kärhä, and E. Ikonen, Spectral irradiance model for tungsten halogen lamps in 340–850 nm wavelength range, Appl. Opt. 49, 880– 886, 2010. Fig. Spectra of an FEL lamp whose T (2500 – 3050 K) is modified by changing the lamp current. ### **Emissivity of Tungsten** - Measured extensively in the 50's by De Vos and Larrabee. - De Vos data available in analytical form $\lambda = 340 2600$ nm, T = 1600 2800 K. Numerically down to 230 nm! - Simple to combine with Planck's law - Larrabee data considered more accurate (scattering) but $\lambda = 350 800$ nm and T = 1600 2400 K are limited. Non-continuities when extrapolating. Fig. Spectral emissivities of sheet tungsten according to De Vos (Dashed lines, 1954) and Larrabee (solid lines, 1959). #### Residual correction - Planck's law modified with tungsten emissivity was fitted to a temperature-varied 1-kW FEL-lamp. - With the presented residual correction, a common solution was found. - Lamp model with two free parameters, B (geometry) and T (temperature). - Tests with Aalto and NPL data on DXW and FEL type lamps indicate <1% interpolation/extrapolation uncertainty for $\lambda = 340-850$ nm. Fig. Residual correction needed for Planck's law with FEL and DXW type lamps after correcting for tungsten emissivity of de Vos. [Ojanen et al, Appl. Opt. 2010] #### Simple Spectral Irradiance Scales $$E(\lambda, T) = B(T)\varepsilon_{W}(\lambda, T)\varepsilon_{\Delta}(\lambda) \frac{2hc^{2}}{\lambda^{5} \left[\exp\left(\frac{hc}{\lambda kT}\right) - 1\right]}$$ - Two unknowns B and T may be obtained - With two filter radiometer - Illuminance and color temperature - Illuminance and electrical measurements - Other combination - Not strictly traceable and accuracy limited (~3%) but may give valuable info for end users # QTH Lamp as Absolute Reference Source - Temperature of the filament can be obtained from published values of resistivity and hot/cold resistance measurements of filament - In theory, the geometrical factor can be calculated. However, one intensity measurement is more accurate. - Corrections for - Filament shape (light recycling factor) - Quartz glass transmittance - Filling gas absorption - Tungsten material???? ## Light recycling - Filament is not sheet metal as in emissivity measurements. - Coiled structure enhances the emissivity by $$\varepsilon_{\rm LRC} = \frac{\varepsilon_{\rm W}}{1 - \xi (1 - \varepsilon_{\rm W})}$$ - For FEL's we estimate ξ = 0.5 \pm 0.1 - Appears as a temperature change of 17 – 20 K. FIG. 1. (Color online) Photograph of the 20 W halogen lamp at a very low current for better visualization. The temperature is highly inhomogeneous in this regime. -- Light recycling 400 500 600 Wavelength/nm 700 1.04 1.03 1.02 Correction factor 1.0.1 0.98 + 0.97 + 0.96 + 300 800 900 #### **Bulb Transmittance** - Light from the filament passes through one glas surface and ~1 cm of filling gas. - We measured three FEL lamps (new, old, broken) for bulb transmittance. - Absorption of filling gas not seen - Glass absorbs heavily. Changes when the lamp ages. - Introduces a temperature change of 5 – 15 K. # Transmittance as Function of Temperature - Theoretically the filling gas absorption could change as a function of temperature. - A halogen lamp was measured for transmittance in on and off states using PLACOS. - Lamp burn increases absorption in UV, no effect in visible. #### Electrical measurements - Temperature can be obtained from cold resistance and hot dynamic resistance measurements as - T = R(T) / [0.0063 K 1R(295 K)] + 393 K. - R(T) measured as lamp voltage / driving current - 4-wire measurement for R(293 K) - The uncertainty is 4% / 19 K Fig. Our resistivity values calculated from measured spectra are in good agreement with other groups. #### Summary - Simple modest-uncertainty spectral irradiance scales may be obtained by modeling incandescent lamps - In addition to tungsten emissivity - Light recycling and bulb transmittance change the temperature of the lamp by 23 36 K (in the T range 2770 3080 K) - Filling gas does not absorb - Increased temperature increases absorption in UV, but no effect in visible - Residual correction of ± 2.5 % still needed. Tungsten properties probably differ from those tabulated. - Lamp temperature may be obtained from electrical measurements with reasonable uncertainty ### **Further Reading** - L. O. Björn, Simple Methods for the Calibration of Light Measuring Equipment, Physiol. Plant. 25, 300-307, 1971. - M. Ojanen, P. Kärhä, and E. Ikonen, Spectral irradiance model for tungsten halogen lamps in 340–850 nm wavelength range, Appl. Opt. 49, 880–886, 2010. - J.C. de Vos, A new determination of the emissivity of tungsten ribbon, Physica 20, 690–714, 1954. - R. M. Pon and J. P. Hessler, Spectral emissivity of tungsten: analytic expressions for the 340 nm to 2.6 μm spectral region, Appl. Opt. 23, 975–976, 1984. - L Fu, R Leutz and H Ries, Physical modeling of filament light sources, J. Appl. Phys. 100, 103528 (8 pages), 2006.