Tungsten Filament Lamps as Absolute Radiometric Reference Sources

Petri Kärhä1,2, Maija Ojanen1,2, Saulius Nevas3, Armin Sperling3, Henrik Mäntynen1 and Erkki Ikonen1,2

1Aalto University, Metrology Research Institute, Espoo, Finland
2Centre for Metrology and Accreditation (MIKES), Espoo, Finland
3Physicalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany
Quartz Tungsten Halogen (QTH) Lamps

- Widely used as transfer standards of spectral irradiance
- FEL & DXW type lamps most common
- Planckian radiators with a few corrections
Spectral Irradiance of QTH Lamp

- Modified Planck’s radiation law

\[B(T) \text{ is a geometrical factor of the measurement, slightly affected by } T \text{ due to thermal expansion} \]

- \(\varepsilon_W(\lambda, T) \) is the spectral emissivity of tungsten

- \(\varepsilon_\Delta(\lambda, T) \) is a residual correction due to other minor contributing factors

Fig. Spectra of an FEL lamp whose \(T \) (2500 – 3050 K) is modified by changing the lamp current.
Emissivity of Tungsten

- Measured extensively in the 50’s by De Vos and Larrabee.
- De Vos data available in analytical form $\lambda = 340 – 2600$ nm, $T = 1600 – 2800$ K. Numerically down to 230 nm!
- Simple to combine with Planck’s law
- Larrabee data considered more accurate (scattering) but $\lambda = 350 – 800$ nm and $T = 1600 – 2400$ K are limited. Non-continuities when extrapolating.

Fig. Spectral emissivities of sheet tungsten according to De Vos (Dashed lines, 1954) and Larrabee (solid lines, 1959).
Residual correction

• Planck’s law modified with tungsten emissivity was fitted to a temperature-varied 1-kW FEL-lamp.
• With the presented residual correction, a common solution was found.
• Lamp model with two free parameters, \(B \) (geometry) and \(T \) (temperature).
• Tests with Aalto and NPL data on DXW and FEL type lamps indicate <1% interpolation/extrapolation uncertainty for \(\lambda = 340 – 850 \) nm.

Fig. Residual correction needed for Planck’s law with FEL and DXW type lamps after correcting for tungsten emissivity of de Vos. [Ojanen et al, Appl. Opt. 2010]
Simple Spectral Irradiance Scales

\[E(\lambda, T) = B(T)\varepsilon_w(\lambda, T)\varepsilon(\lambda) \frac{2hc^2}{\lambda^5 \left[\exp\left(\frac{hc}{\lambda kT}\right) - 1 \right]} \]

- Two unknowns \(B \) and \(T \) may be obtained
 - With two filter radiometer
 - Illuminance and color temperature
 - Illuminance and electrical measurements
 - Other combination

- Not strictly traceable and accuracy limited (~3%) but may give valuable info for end users
QTH Lamp as Absolute Reference Source

• Temperature of the filament can be obtained from published values of resistivity and hot/cold resistance measurements of filament

• In theory, the geometrical factor can be calculated. However, one intensity measurement is more accurate.

• Corrections for
 – Filament shape (light recycling factor)
 – Quartz glass transmittance
 – Filling gas absorption
 – Tungsten material???
Light recycling

- Filament is not sheet metal as in emissivity measurements.
- Coiled structure enhances the emissivity by
 \[\varepsilon_{LRC} = \frac{\varepsilon_W}{1 - \xi(1 - \varepsilon_W)} \]
- For FEL’s we estimate \(\xi = 0.5 \pm 0.1 \)
- Appears as a temperature change of 17 – 20 K.
Bulb Transmittance

- Light from the filament passes through one glass surface and ~1 cm of filling gas.
- We measured three FEL lamps (new, old, broken) for bulb transmittance.
- Absorption of filling gas not seen.
- Glass absorbs heavily. Changes when the lamp ages.
- Introduces a temperature change of $5 - 15$ K.
Transmittance as Function of Temperature

• Theoretically the filling gas absorption could change as a function of temperature.
• A halogen lamp was measured for transmittance in on and off states using PLACOS.
• Lamp burn increases absorption in UV, no effect in visible.
Electrical measurements

- Temperature can be obtained from cold resistance and hot dynamic resistance measurements as
 \[T = \frac{R(T)}{[0.0063 \text{ K}^{-1} R(295 \text{ K})] + 393 \text{ K}}. \]
- \(R(T) \) measured as lamp voltage / driving current
- 4-wire measurement for \(R(293 \text{ K}) \)
- The uncertainty is 4% / 19 K

Fig. Our resistivity values calculated from measured spectra are in good agreement with other groups.
Summary

• Simple modest-uncertainty spectral irradiance scales may be obtained by modeling incandescent lamps
• In addition to tungsten emissivity
 – Light recycling and bulb transmittance change the temperature of the lamp by 23 – 36 K (in the T range 2770 – 3080 K)
 – Filling gas does not absorb
 – Increased temperature increases absorption in UV, but no effect in visible
• Residual correction of $\pm2.5\%$ still needed. Tungsten properties probably differ from those tabulated.
• Lamp temperature may be obtained from electrical measurements with reasonable uncertainty
Further Reading