

Optical properties of Al₂O₃ and Al₂O₃/BaSO₄ reflecting diffusers processed with plasma powder spraying

Hiroshi Shitomi ¹⁾, Shinobu Ito ²⁾, Motohiro Yamada ³⁾ and Masahiro Fukumoto ³⁾

1) National Metrology Institute of Japan (NMIJ,AIST)

2) Optcom Co. Ltd,

3) Toyohashi University of Technology

Integrating spheres, diffusers

Integrating spheres

Total luminous flux measurements Reflectance/Transmittance measurements Components of photo-detectors

Reflecting diffusers

Radiance/Luminance standards

Reflectance standard (diffuse, reflectance factor, BRDF) Installation in optical systems to uniform radiation

Consideration for industrial use

Integrating spheres and reflecting diffusers used for...

- Products inspection (high-speed testing)
- Field measurements

have problems such as ...

- **Damage** (mechanical vibration, frequent attachment/detachment of products etc.)
- Deterioration (due to environmental factor etc.)
- High-cost

They need to have ...

- > Optical properties similar to those used in laboratories
- High durability against mechanical shocks etc.
- Cost effectiveness (material, preparation process)

Major Reflecting Diffusers

- Major process to prepare reflecting diffusers (or integrating spheres)
 - Painting: $BaSO_4$ Pressing: $BaSO_4$, PTFE etc.Sintering: Ceramic tiles (AI_2O_3 etc.)Resin: PTFESmoking: MgO

Reflecting diffusers prepared by	Mechanical strength	Reproduci- bility	Optical Properties	Applicability to sphere	Cost
Painting	Х	Х	0	0	0
Pressing	X	Х	0	0	0
Sintering	0	0	0	Х	Х
Resin	Х	0	0	0	Х
Smoking	Х	Х	Х	0	0

Plasma powder spraying

Coating with high mechanical strength using various types of materials

Objectives

- Investigation on basic optical properties of Al₂O₃ based reflecting diffusers processed with plasma powder spraying technique
- Approaches to improve reflection properties (reflectance, spectral flatness) by means of ...
 - Containing BaSO₄ as compound
 - Another (new) thermal spraying technique

Experimental setup

- Reflecting diffusers based on plasma powder spraying Targeted material: Al₂O₃
 *Thickness: 0.2 mm, 0.4 mm, 0.6 mm
 *Substrate: Aluminum (50 x 50 x 3) mm
- Basic Optical Properties
 - Reflectance
 - •Spatial distribution
 - Ageing
 - •Exposure to UV radiation
- \bullet Containing BaSO4 as compound Al2O3/BaSO4 (3:1) and Al2O3/BaSO4 (7:1)
- New thermal spraying process Suspension thermal spraying

Methods for Evaluation (1)

about 3 nm

8º:*di* (SCI)

1) Spectral Diffuse Reflectance

• Instrument:

Calibrated spectrophotometer (PerkinElmer, Lambda-900) 250 nm to 900 nm (5 nm interval)

- Range:
- Bandwidth:
- Geometry:

From a Monochromator

 $\rho_{test}(\lambda) = \frac{R_{ref1}(\lambda)}{R_{std}(\lambda)} \cdot \frac{R_{test}(\lambda)}{R_{ref2}(\lambda)}$ $\rho_{std}(\lambda)$

Detector

 $\Phi_{r\theta}(\lambda)$

 $\Phi_i(\lambda)$

Aperture

Methods for Evaluation (2)

2) Spatial Distribution of Reflected Radiation

- Instrument:
- Range:
- Bandwidth:
- Geometry:

Gonio-Reflectometer (Murakami, GP-200) **Light Source** 400 nm to 700 nm (16 interference filters) ~10 nm Incident Angle: 0º incidence Receiving Angle: -45° to 90° (1° interval)

3) UV radiation exposure

- Source: Hg/Xe lamp
- Irradiation area: 100 mm x 100 mm
- Uniformity: < 2.5 %٠ (for surface reforming)
- Dose: 50 J/cm², 100 J/cm², 150 J/cm² (at 365 nm)

Mechanical Strength

- Vickers Hardness (Load: 0.5 N) Al₂O₃ thermal spraying: ~500 HV Al₂O₃/BaSO₄ (3:1) thermal spraying: ~400 HV cf.) BaSO₄ sprayed with PVA-aq: N/A
- Strength test

No damage after strength test with intense vibration and scratch using a metal spatula.

Reflectance vs. Thickness

different thickness

Effect on Containing BaSO₄

Fig. Spectral diffuse reflectance of Al₂O₃ and Al₂O₃+BaSO₄ (3:1) samples processed with plasma powder spraying

Reflectance Uniformity

Fig. Reflectance non-uniformity of Al_2O_3 and Al_2O_3 +BaSO₄ (3:1) samples processed with plasma powder spraying samples

Spatial Distribution (1)

Observation Angle / deg

Fig. Spatial distribution of reflected radiation from Al_2O_3 and Al_2O_3 +BaSO₄ (3:1) samples processed with plasma powder spraying

Spatial Distribution (2)

Observation Angle / deg

Fig. Spatial distribution of reflected radiation from Al_2O_3 and Al_2O_3 +BaSO₄ (3:1) samples processed with plasma powder spraying

Ageing Characteristics (1)

Fig. Change of spectral diffuse reflectance after a half-year storage for Al_2O_3 and Al_2O_3 +BaSO₄ (3:1) samples

Ageing Characteristics (2)

Fig. Change of spectral diffuse reflectance after a half-year, a one year and two years storage for AI_2O_3 and AI_2O_3 +BaSO₄ (3:1) samples

Exposure to UV Radiation

spraying due to UV exposure

Suspension thermal spraying

Supplying the sample by means of suspension (aqueous solution) --- nano-structured coatings

Suspension thermal Spraying

Fig. Spectral diffuse reflectance of Al₂O₃ samples based on (1) plasma powder spraying, (2) HVOF suspension spraying, and (3) plasma suspension spraying

Summary

- Al_2O_3 and $Al_2O_3/BaSO_4$ (3:1) reflecting diffusers processed with plasma powder spraying technique
- Realization of reflecting diffusers with high mechanical strength
- Investigation of the basic optical properties
 - Reflectance of approximately 0.85 to 0.90 in the visible range
 - Improvement of reflectance from 350 nm to 500 by Adding BaSO₄
 - > Reflectance uniformity < 0.5 % (1 σ)
 - Spatial distribution of reflected radiation: approximate to lambertian
 - Ageing properties
 - decrease of reflectance around 300 nm to 400 nm
 - saturation effect
 - restoration of reflectance due to UV exposure
 - Needs for further investigation, especially to clarify the mechanism
 Potential of suspension thermal spraying