

Enabling solar cell and detector calibrations with fs pulses

Stefan Winter, Thomas Fey, Dirk Friedrich, Ingo Kröger Physikalisch-Technische Bundesanstalt PTB Working Group 4.14 - "Solar Cells"

Overview

- Demand for high accuracy solar cell calibrations
- Solutions and their problems
- O The new PTB setup: Advantages and disadvantages
- How we solve the disadvantages
- Measurements results
- Outlook

Remand for high accuracy solar cell calibrations PTB

Source: FPXAchange

Calibration methods for solar cells

	4
	-

Integral			Spectral	
Outdoor, with solar radiation		Indoor		
Space (>=40km) AM0	On the earth AMn	Solar simulator	DSR-Method	
Very expensive	n>=1, direct, total, global radiation	Good reproduc	od reproducibility, independent of place and time	
	Appropriate and stable weather conditions needed	large cells and modules	absolute method without spectral mismatch; cell	
	Spectral Mismatch correction where required		size <= 15x15 cm ²	

Metrological background

Standard solar spectrum on earth (AM1.5) or in space (AM0)

Spectral responsivity of different types of solar cells

- Xenon or quartz halogen lamp based system (DSR, SCF) (or laser-driven xenon lamps or supercontinuum systems)
 - + Easy to use
 - Low Power (100 μ W) with subsequent problems \Rightarrow
 - Uniformity
 - Bandwidth
 - Signal-To-Noise especially at high bias levels
 - Rel. & abs.
 measurement
 - Size of the solar cells is limited

S. Winter, T. Wittchen, J. Metzdorf in Proc. 16th EU PVSEC, (Glasgow 2000)

• LED based systems (KRISS)

- + High Power level (depending on the setup)
- + Low priced, as no monochromator is needed
- Wavelength stability (temperature dependent),
- High Bandwidth
- No wavelength tuneability

Source: Zaid G., Park S-N., Park S., Lee, D-H., Appl. Opt. 49(35), 6772-6783, 2010

o cw-laser based systems (TULIP, SIRCUS)

- + Very low bandwidth
- + High power levels
- Automation is difficult
- Interference effects
- Gaps in the spectral range

See:

Session 4a, INV 7: Armin Sperling: "Tuneable lasers for photometry and radiometry" Poster-Session B: DBR_PO_017, Michaela Schuster: "Correction algorithm for interference affected measurement data"

- Quasi cw laser based systems with modelocked Ti-Sapphire (Quasi-cw-TULIP, LASER-DSR)
 - + Very high power (up to > 3500 mW)
 - + Fully tunable
 - + Wavelength range from 190 nm to 4000 nm
 - + Complete automation possible from 210 nm to 4000 nm
 - Unknown behavior of short fs pulses to semiconductor detectors, especially in the UV and blue wavelength region
 Every 12 nm a 120 fs pulse hits the surface: Duty cycle 1/100.000
 ⇒ Integrating spheres are used for pulse stretching
 ⇒ fluorescence effects + high power losses

The new LASEB-RSB setup

Absolute

680 nm - 1080 nm

190 nm - 4000 nm

Absolute

The new LASER-RSR setup

190 nm - 4000 nm

680 nm - 1080 nm

Fiber bundle with 100 multimode fibers, each with an individual length

- Fiber bundle with different length of the single fibers
- The laser is pulsed with 80 MHz
 - \Rightarrow every 12.5 ns a pulse appears
 - ⇒ During this time the light moves 3 m in air and about 2 m in the fiber
 - \Rightarrow The distance between the shortest and longest fiber must be 2m
- We need in any case a fiber to couple into the monochromator
- To improve efficiency the ends of the fibers are fused

• Experimental prove: Signal behind a standard fiber

• Experimental prove: Zero line without signal

O Experimental prove: Const. Signal behind converter

Measurement results

Conclusion

- PTB develops the next-generation of the DSR facility: LASER-DSR
- It has up to 1000 times more optical power than the old facility
- It is a multipurpose spectral comparison facility.

 $S = S(\lambda, E, f_{Chopper}, T, x, y, z, \varphi, \theta)$

- We expect a reduction of uncertainty from 1.6% to 0.6% for large solar cells
- A fiber bundle with different lengths converts the fs pulses to a const signal
- The Pulse-To-CW converter can be used for all light sources with high repetition rates:
 - ✓ Pulsed Laser
 - ✓ Supercontinuum sources
 - ✓ Synchrotron radiation

Photometry and Radiometry: Biology, Medicine Chemical Analyses