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Overview

O Demand for high accuracy solar cell calibrations

O Solutions and their problems

O The new PTB setup: Advantages and disadvantages
O How we solve the disadvantages

O Measurements results

O Outlook



Remand for high accuracy solar cell calibrationsP-rB
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Calibration methods for solar cells |'5I-B
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Metrological background

Standard solar spectrum
on earth (AM1.5) or in space (AMO)

AMO (NASA)

AM1.5 (IEC)
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Spectral responsivity
of different types of solar cells
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How to measure the spectral responsiyity ISI-B

O Xenon or quartz halogen lamp based system (DSR, SCF)
(or laser-driven xenon lamps or supercontinuum systems)

+ Easy to use

— Low Power (100 pW) with subsequent problems =

— Uniformity

— Bandwidth

— Signal-To-Noise
especially at
high bias levels

— Rel. & abs.
measurement

— Size of the solar cells
is limited

S. Winter, T. Wittchen, J. Metzdorf in
Proc. 16th EU PVSEC, (Glasgow 2000)




How to measure the spectral responsivity ISI-B

O LED based systems (KRISS)
+ High Power level (depending on the setup)
+ Low priced, as no monochromator is needed

— Wavelength stability (temperature dependent),

LED disk (25 cm dia.)

e H]gh Bandw-ldth on a rotational stage

— No wavelength tuneability integrating sphere

(10 cm diameter)

®

bias source
QTH lamp)

Source: Zaid G., Park S-N., Park S., Lee, D-H., Appl. Opt. 49(35), 6772-6783, 2010



How to measure the spectral responsiyity ISI-B

O cw-laser based systems (TULIP, SIRCUS)
+ Very low bandwidth
+ High power levels
— Automation is difficult
— Interference effects

— Gaps in the spectral range

See:

Session 4a, INV 7: Armin Sperling:

“Tuneable lasers for photometry and radiometry”
Poster-Session B: DBR_PO_017, Michaela Schuster:
“Correction algorithm for interference affected measurement data” |




How to measure the spectral responsiyity ISI-B

O Quasi cw laser based systems with modelocked Ti-Sapphire
(Quasi-cw-TULIP, LASER-DSR)

+ Very high power ( up to > 3500 mW)

+ Fully tunable

+ Wavelength range from 190 nm to 4000 nm

+ Complete automation possible from 210 nm to 4000 nm

— Unknown behavior of short fs pulses to semiconductor detectors,
especially in the UV and blue wavelength region
Every 12 nm a 120 fs pulse hits the surface: Duty cycle 1/100.000
= Integrating spheres are used for pulse stretching
= fluorescence effects + high power losses



The new LASER-DSR setup PIB
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The new LASER-DSR setup PIB

- Absolute
- spectral
responsiy

O Laser substitutes lamps

» Power increases up to a factor 1000

+ Good uniformity
+ Low bandwidth possible
+ No interpolation between relative and absolute

measurement | _Bias_lamps with
dichroic mirrors fc
absolute calibratio
Pulsed with 80 MHz CW signal hrggonc;tig:je
Modelocked Optical parametric Bandpass
Ti:Sapphire  m=s  Oscillator (OPO), =+« AL 4— limitation
Converter
Laser SHG, THG, FHG (Monochromator)

680 nm - 1080 nm 190 nm - 4000 nm



Pulse to cw converter PIB




Signal

Pulse to cw converter
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Fiber bundle with 100 multimode fibers, each with an individual length

/L1=l0+2.5cm

\L3=l0+7.5cm

: Laser Signal
—— : Signal with
"Pulsed in
cw-Converter"

B 25 375 Z
Time / ns

Lo=1o th=1
t;=1t;,+0.125 ns
tz = to + 0.250 ns

t3 = to + 0.375 ns

L2= l0+ 5.0 cm

= l0+247.5 cm t99 o to + 12.375 ns

And after 12.5 ns
the next pulse
from the laser
appears.
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Pulse to cw converter

O Fiber bundle with different length of the single fibers

O The laser is pulsed with 80 MHz
= every 12.5 ns a pulse appears
= During this time the light moves 3 m in air
and about 2 m in the fiber
= The distance between the shortest and longest fiber must be 2m

O We need in any case a fiber to couple into the monochromator

O To improve efficiency the ends of the fibers are fused
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Pulse to cw converter

O Experimental prove: Signal behind a standard fiber
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Pulse to cw converter PIB

O Experimental prove: Zero line without signal
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Pulse to cw converter

O Experimental prove: Const. Signal behind converter
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Spectral power / mW

Measurement results

3700 MW @ 800 nm
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5450 mW @ 266\nm \
| a :

60 MW @330 nm E—
80 mW @ 230 nm ——
+ 17 mW @ 200 nm

230 MW @ 215 nm

920 MW @ 365 nm

: HarmoniXX FHG 3+1 fs

: HarmoniXX FHG 2+2 fs

: HarmoniXX THG fs

: HarmoniXX SHG only fs
: HarmoniXX SHG OPO fs
: Chameleon Ultra Il

: Chameleon Compact OPO, Signal
: Chameleon Compact OPO, Idler
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Conclusion

O PTB develops the next-generation of the DSR facility: LASER-DSR
O It has up to 1000 times more optical power than the old facility
O It is a multipurpose spectral comparison facility.
S =3(4, E, fehopper 1> % Y5 Z, @, 0)
O We expect a reduction of uncertainty from 1.6% to 0.6% for large solar cells
O A fiber bundle with different lengths converts the fs pulses to a const signal

O The Pulse-To-CW converter can be used for all light sources with high
repetition rates:

v Pulsed Laser Photometry and Radiometry:
v Supercontinuum sources Biology, Medicine

v Synchrotron radiation Chemical Analyses



