

#### Session 6a, 09:00 on Thursday 22 Sept 2011

# Novel photon detector utilizing superconducting optical detection technology



Daiji Fukuda, G. Fujii, A. Yoshizawa, T. Numata, K. Amemiya, S. Inoue, and H. Tsuchida

<sup>1</sup>National Institute of Advanced Industrial Science and Technology, NMIJ <sup>2</sup>Nihon University



11<sup>th</sup> International Conference on New Developments and Applications in Optical Radiometry, Grand Wailea Resort, Sep. 19-23, 2011



### Outline

Background

- Requirements to optical photon detectors

- Current status of superconducting TES(transition edge sensor) technology
  - NMIJ/AIST
  - InRiM and NIST
- Applications of TES



### Ideal photon detector

- Detection efficiency
  - Probability of one single photon detection  $\eta \sim 100 \%$
- Dark-count rate
  - Rate of pulses in the absence of photons  $D \sim 0 \text{ Hz}$
- Dead time
  - Incapable time after a photon detection  $\tau_{dead} \sim 0 \text{ s}$
- Timing jitter
  - Variation of photon detecting time  $\delta t \sim 0 \text{ s}$
- Photon number resolving Yes – Ability to distinguish the number of photons  $\Delta E \sim 0 \text{ eV}$



### Performance of PNRD

| PNRD           | D.Ε. η        | Jitter | Dark count | Count rate |
|----------------|---------------|--------|------------|------------|
| PMT            | 40 %@500 nm   | 300 ps | 100 Hz     | 10 MHz     |
|                | 2 %@1,550 nm  |        | 200 kHz    |            |
| Si SPAD        | 40 %@532 nm   | 300 ps | 25 kHz     | 30 MHz     |
| InGaAs<br>SPAD | 10 %@1,550 nm | -      | -          | _          |
| CIPD           | 80 %@1310 nm  | -      | -          | 100 Hz     |
| VLPC           | 88 %@694 nm   | 40 ns  | 20 kHz     | 10 MHz     |
| W-TES          | 95 %@1,550 nm | 100 ns | 3 Hz       | 100 kHz    |

- Among photon number resolving detectors(PNRDs), superconducting *Transition Edge Sensors*(TESs) have high D.E. & extremely low Dark count.
- Drawback is slow response speed.
- AIST has been making efforts to enhance TES performances.



### Transition edge sensor(TES)

#### Schematics of calorimeters



### **Our approaches**

- Relatively high  $T_c$  superconductor
  - Improve response time, time jitter and timing resolution
  - Titanium  $T_c$ ~360 mK
- Multi-layered optical cavity structure
  - Anti-reflection/TES/High reflection mirror
  - Dielectric films of  $Ta_2O_5$  and  $SiO_2$
  - High absorption and wide bandwidth
  - Optimized at any wavelength

#### <u>*T*</u><sub>c</sub> of superconductors











### **Ti-TES with optical cavity**



D. Fukuda, *Opt.Express*, **19**, 870, (2011)







### **Optical fiber coupling**

#### **Typical fiber coupling method**



- Spot size will be divergent in case of  $W_{gap} > z_0$ .
- Wavelength dependence due to optical interference.

Rayleigh length 
$$\pi \pi^2$$

$$z_0 = \frac{\pi \varpi_0^2}{\lambda}, \, \varpi_0 = MFD/2$$

MFD: mode field diameter



### **Optical fiber coupling**

PAIST





### **Optical fiber coupling**

#### **Our fiber coupling method**

#### (small-gap & index-matched)



D. Fukuda, *Opt.Express*, **19**, 870, (2011)

- The optical fiber is placed just closely on TES surface.
- The gap is filled with UV curable resin (n ~1.5).
- $W_{gap} < 1 \ \mu m$  can be possible.
- The TES size can be as small as the MFD of the fiber.
- Interference effect small.



### **Fiber coupled TES device**







•The reflectance of the fiber coupled device was measured with return loss measurement method (IEC 61300-3-6).





- A chip carrier for 6-ch TES array is placed in cryogen free ADR(adiabatic demagnetization refrigerator)
- Turn-key operation in ADR, the minimum temperature~50 mK





### Photon number resolving capability







### **Detection efficiency**





### **Response speed**



NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



 $10 \text{ Hz} < R_{\text{inc}} < 1 \text{ GHz}$ 

### Maximum count rate

PAIST

- Count rate measurement to continuous wave (CW) laser.
- Incident rate of the photon number per second : R<sub>inc</sub> = Pλ/hc;
  P is the incident power, and λ is the wavelength.



NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

# Maximum count rate

AIST

- Count rate measurement to continuous wave (CW) laser.
- Incident rate of the photon number per second : R<sub>inc</sub> = Pλ/hc;
  P is the incident power, and λ is the wavelength.



NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



### Dark count

- Intrinsically, the TES should show no dark count !
- However, the optical fiber itself at room temperature would be a source of dark count, due to black body radiation in *Planck's law*.





### **Tungsten (W) Transition Edge Sensor**

Measurements of TES Detection Efficiency and Optical Stack Expected Absorption





Si substrate



Fiber coupled self-aligned TES < 1% coupling loss



#### Courtesy of Adriana NIST



### **Applications of TES**

- Industrial use, biotechnology...
  - Scattered photon measurement
  - Single photon camera
- Quantum information
  - Generation of non-Gaussian state
  - Quantum optimal receiver
  - QKD, and more!
- Metrology
  - Qu-candera
  - Highly precise phase determination
  - Highly precise evaluation for single or entangled photon sources



K. Tsujino, D. Fukuda, PRL 106, 250503 (2011)

α

Bit error rate can surpass Standard quantum limit (SQL).

#### AIST

### Conclusion

- Our results of TES performances
  - Energy resolution  $\Delta E$ 
    - 0.24 eV(5 μm Ti-TES), 0.16 eV(5 μm Ti/Au-TES)
    - 0.40 eV(10 μm Ti-TES)
  - Detection efficiency  $\eta$ 
    - 98%@ 850 nm, >84 %@1550 nm
  - Timing jitter  $\delta t$ 
    - <25 ns@(10 μm Ti-TES), 23.5 ns@ (5 μm Ti/Au-TES)</li>
  - Decay time constant  $\tau$ 
    - 100 ns to 460 ns(depending on  $T_c$ )
- TES PNRD are demonstrating high performance photon detection capability in various fields.



# Thank you for your attention.

### d.fukuda@aist.go.jp







### Black body derived photons





### Dark count dependence on the fiber length





# **Evaluation of entangled photon source**

### <u>Background</u>

- Quantum entanglement is an essential resource for quantum information and few photon metrology.
- Polarization entangled photon pair generated by Parametric down conversion.

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|H\rangle_s |H\rangle_i + |V\rangle_s |V\rangle_i)$$

Evaluation of *Purity* and *Fidelity* is very important.



TES technology is applied to the evaluation of entangled photon pairs.



### **Detection efficiency determination**



"Trilateral optical power meter comparison between NIST, NMIJ/AIST, and METAS", Appl. Optics, 46, p643-647, (2007). APMP.PR-S5(fiber attenuation), APMP.PR-S6(laser power)



### **Generation of entangled photon pairs**



PC: polarization controller, ATT: attenuator, DM1-2: dichroic mirror, PBS: polarization beamsplitter, PPLN: periodically poled lithium niobate waveguide

H.C. Lim, A. Yoshizawa et al., *Opt.Express*, **16**, 12460, (2008)

- CW pump tunable laser at 775 nm with 15 mW
- MgO-doped PPLN waveguide with 1 mm long (type 0)
- PMF is twisted by 90 degree in the fiber loop
- Signal and idler photons(~1550 nm) are separated at DM2.



NMJ National Metrology Institute of Japan

### Set up for quantum-state tomography



- Q-tomography is a frequently used method to reconstruct a density matrix.
- Coincident events are counted by two TES.
- The dependence of the coincidence counts on the polarization states of signal and idler photons are evaluated.
- The visibility is > 97.4 % in right figure.





**Results of quantum-state tomography** 

#### Density matrix $\rho$ obtained by Q-tomography Real part of $\rho$ Imaginary part of $\rho$ 0.5 0.5 0.25 0.25 0.25 0.25 <u>0.5</u> †<u></u>\_0.5 VН HH HH ΗV HV HV VH VH нн HH $\sqrt{}$ \٨/

Coincident count rate=60 Hz

National Metrology Institute of Japan

Purity = $Tr(\eta^2)$ = 98.3% Fidelity =  $\langle \phi | \rho | \phi \rangle$  = 98.5%

- In this experiment, DE of the TES is reduced to  $\eta \sim 50$  % because of dark count.
- Nevertheless, 10 times larger coincidence count is obtained compared to that with InGaAs-APD ( $\eta \sim 15$  %) in the same experimental condition.
- High purity and fidelity > 98 % is successfully achieved.
- The band pass filter will reduce the dark count. Photon number resolving power will enhance fidelity in case of multi-pair-photon generation region (future work).



# Why so high DE is crucial ?

#### Incident photon state

#### **Observed photon state**





### **Detection efficiency determination**



NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



# Why so high DE is crucial ?

#### Incident photon state

#### **Observed photon state**





# Why so high DE is crucial ?

#### Incident photon state

#### **Observed photon state**




#### Conclusion

- Ti-TES
  - Energy resolution ΔE
    0.24 eV @ 5 μm × 5 μm size
    0.40 eV @ 10 μm × 10 μm size
  - Detection Efficiency  $\eta$ 
    - 98 %@850 nm, 84 %@1550 nm
  - Decay time  $\tau_{\text{etf}}$ 
    - 100 ns to 460 ns (Depends on  $T_{\rm c}$ )
  - Time jitter
    - 25 ns, and 18 ns(50 % DE) @ 850 nm



#### **Evaluation of entangled photon source**

#### <u>Background</u>

- Quantum entanglement is an essential resource for quantum information and few photon metrology.
- Polarization entangled photon pair generated by Parametric down conversion.

 $|\psi\rangle = \frac{1}{\sqrt{2}} (|H\rangle_s |H\rangle_i + |V\rangle_s |V\rangle_i)$ 

• Evaluation of *Purity* and *Fidelity* is very important.

#### Advantages of TES

- High DE improves the provability of coincident counts.
- Low dark count reduced accidental coincident counts.
- Possibility to discriminate multi photon generation events.



Quantum circuit(quantum gate)

# Expectations to superconducting sensors in quantum information(QI)

- In QI, people need to full-control photons; photon numbers, phase, polarization, time of photon creation.
- People desire perfectly ideal photon detectors.

#### Quantum key distribution(QKD)



Quantum photolithography, quantum imaging, quantum candera, and so many!



#### What can TES do ?

- In QI, people need to full-control photons; photon numbers, phase, polarization, time of photon creation.
- People desire perfectly ideal photon detectors.



Quantum photolithography, quantum imaging, quantum candera, and so many!





## Maximum count rate

AIST

- Count rate measurement to continuous wave (CW) laser.
- Incident rate of the photon number per second : R<sub>inc</sub> = Pλ/hc;
  P is the incident power, and λ is the wavelength.



NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



 $R_{\rm n}$  10.3  $\Omega({\rm Ti})$ 

 $R_{\rm n}$  2.4  $\Omega$ (Au/Ti)

#### AIST

### Thin gold covered Ti-TES at AIST

- Au(10 nm)/Ti(26 nm)-TES
  - Energy resolution  $\Delta E$ : 0.16 eV @ 5  $\mu$ m × 5  $\mu$ m size
  - Detection Efficiency η: 84 %@1550 nm
  - Decay time  $\tau_{\text{etf}}$  : 400 ns @  $T_{\rm c}$  320 mK





NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



#### **Time jitter**





#### **Time jitter**



![](_page_45_Picture_0.jpeg)

#### **Time jitter measurement**

![](_page_45_Figure_3.jpeg)

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AISTD. FUKUDA, IEEE AS(2011)

![](_page_46_Picture_0.jpeg)

#### **Dependence on incident energy**

![](_page_46_Figure_3.jpeg)

![](_page_47_Picture_0.jpeg)

#### **Dependence on incident energy**

![](_page_47_Figure_3.jpeg)

![](_page_48_Picture_0.jpeg)

#### **Dark count**

PAIST

- What causes the dark count ?
- 1. Error counts derived from the insufficient  $\Delta E$ 
  - Overlap of the vacuum and single photon state
  - Two problems are caused.
    ① Dark count probability

$$p_{dark}(E_{th}) = \frac{1}{2} \left\{ 1 - \operatorname{erf}\left(\frac{E_{th}}{\sqrt{2\pi}\sigma}\right) \right\}$$

2 Loss of single photon counts

$$p_{loss}(E_{th}) = \frac{1}{2} \left\{ 1 + \operatorname{erf}\left(\frac{E_{th} - E_1}{\sqrt{2\pi}\sigma}\right) \right\}$$

- 2. Black body radiation
  - Probably dominant for 1550 nm TES
  - BB photons at fiber end (A.J. Miller and et al., Proc. 8<sup>th</sup> QCMC, pp. 445)
  - BB photons comes from the optical fiber.

Thu-186, presented by Fujii-kun.

![](_page_48_Figure_14.jpeg)

![](_page_49_Picture_0.jpeg)

NHIJ National Metrology Institute of Japan

![](_page_49_Figure_2.jpeg)

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

![](_page_50_Picture_0.jpeg)

#### AIST

### Application of optical TES to QI

- Quantum receiver(QR)
  - Large capacity communication with much low power
  - Reduce the number of repeaters in long-distance fiber network
  - Deep space telecommunication, satellite-ground link are possible.
  - Type of QR ON/OFF key Im ImIm

![](_page_51_Picture_0.jpeg)

#### **Realization of QR with TES**

![](_page_51_Figure_3.jpeg)

- What we want do; to establish the minimum bit error rate(BER) with the incident coherent state |α|<sup>2</sup><1</li>
- Standard method; to use homodyne detector (phase sensitive detector, and "God" detector) Standard quantum limit(SQL)

![](_page_52_Picture_0.jpeg)

#### **Realization of QR with TES**

![](_page_52_Figure_3.jpeg)

- What we want do; to establish the minimum bit error rate(BER) with the incident coherent state |α|<sup>2</sup><1</li>
- Standard method; to use homodyne detector (phase sensitive detector, and "God" detector) Standard quantum limit(SQL)
- our method; to use a displacement operator and TES !

![](_page_53_Picture_0.jpeg)

### OR in BPSK with $D(\beta)$ and TES

![](_page_53_Figure_3.jpeg)

• Yes, bit error rate < SQL !

K. Tsujino, D. Fukuda, PRL(2011)

![](_page_54_Picture_0.jpeg)

### Thank you for your attention.

![](_page_55_Picture_0.jpeg)

#### **Reflectance of fiber-coupled TES**

![](_page_55_Picture_3.jpeg)

Absolute reflectance measurement of fiber coupled Ti-TES device

![](_page_55_Figure_5.jpeg)

AIST

### How to improve DE ?

## Absorptance of photons in superconducting

- Complex refractive index n=6.1+4.3i for Ti
- Photon absorption~30 %
- An optical resonant cavity

# Coupling efficiency to optical fiber

- Optical spot divergence by diffraction(NA~0.14)
- Wavelength dependent  $\eta_{\text{coup}}$  caused by optical interference
- Fresnel reflection at fiber end.

![](_page_56_Figure_11.jpeg)

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

![](_page_57_Picture_0.jpeg)

# Multi-layered dielectric optical resonant cavity

![](_page_57_Figure_3.jpeg)

![](_page_58_Picture_0.jpeg)

# Single photon & photon number resolving detector

![](_page_58_Figure_3.jpeg)

Output

The same output signal for varying photon number input

Applications: QKD, quantum optics measurement, etc.

## Photon number resolving detector (PNRD)

![](_page_58_Figure_9.jpeg)

Output

Output signal proportional to the incident photon number

Applications: linear optical quantum computing, more complex QI protocols, which deal with many photons.

![](_page_59_Figure_1.jpeg)

#### True photon number resolving; detection efficiency

![](_page_59_Figure_3.jpeg)

![](_page_60_Picture_0.jpeg)

AIST

iNRi

Institute of Quantum Science

### Collaborators

#### AIST

- Go Fujii
- Takayuki Numata
- Masahiro Ukibe
- Taro Itatani
- Akio Yoshizawa
- Hidemi Tsuchida

Device fabrication Fiber coupling

- Device fabrication
- Optical dielectric film
- Quantum optics
- Quantum optics

- Mauro Rajteri
- Shuichiro Inoue
- Masahide Sasaki

Executive Program Nihon University

NICT

![](_page_61_Figure_1.jpeg)

## Outline

- Expectations to superconducting detectors in QI
- What do we need ?
  - Detection efficiency
    - Optical absorption
    - Optical fiber coupling efficiency
  - Fast response
    - Decay time constant
    - Time jitter
  - Dark counts (Actually, we do not need this)
    - Derived from  $\Delta E$
    - Derived from Black body radiation
- Application of optical TES technology to QI
  - Realization of surpassing a SQL in BPSK optimal quantum receiver

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

![](_page_63_Picture_0.jpeg)

![](_page_63_Figure_2.jpeg)

![](_page_64_Picture_0.jpeg)

#### **Challenge to new optical TES**

- Problem of Ti-TES
  - Poor energy resolution
  - Difficulty of the cavity design
    - Existence of TiO2 on surface

![](_page_64_Figure_7.jpeg)

![](_page_65_Picture_0.jpeg)

# Energy resolution and Detection efficiency at 844 nm

![](_page_65_Figure_3.jpeg)

Photon detection probability with a free parameter  $\eta$ ,

$$P_{\eta}(n \mid \mu) = \frac{(\eta \mu)^{n} e^{-\eta \mu}}{n!}$$

μ: Incident average photon number
 n: Photon number
 η: Detection efficiency

![](_page_65_Picture_7.jpeg)

![](_page_66_Picture_0.jpeg)

![](_page_66_Picture_1.jpeg)

## 表面保護層の適用

- Thin gold film to protect Ti surface
   SRONの例
  - 金は反射が高い。高い量子効率は可能か?

![](_page_67_Picture_0.jpeg)

## Optical cavity design

• 薄い金を用いた時の吸収率

![](_page_68_Picture_0.jpeg)

![](_page_68_Figure_2.jpeg)

![](_page_69_Picture_0.jpeg)

薄膜金による光子数識別

#### 分解能と速さ

tETF~400 ns

![](_page_69_Figure_5.jpeg)

![](_page_70_Picture_0.jpeg)

#### Photon number resolving capability

![](_page_70_Figure_3.jpeg)

- Saturation tendency is observed (n > 4).
- Saturation affects observed photon distribution ?
- Is there any drawback in multi-layered structure?

![](_page_71_Picture_0.jpeg)

#### **Reflectance of fiber-coupled TES**

![](_page_71_Figure_3.jpeg)

SEM image by Focused ion beam milling

•The reflectance of the fiber coupled device was measured with return loss measurement method (IEC 61300-3-6).


#### **Reflectance of fiber-coupled TES**



SEM image by Focused ion beam milling



#### **Reflectance of fiber-coupled TES**



SEM image by Focused ion beam milling

• Optical interference of reflections on the fiber edge and the TES surface.



#### **Reflectance of fiber-coupled TES**



- *W*<sub>gap</sub> < 1 μm
- Absorbance of cavity > 99.5 %



<u>AST</u>

## 超伝導転移端センサに対する 黒体輻射の影響

Effect of black body radiation on the performance of superconducting transition edge sensors

- <u>藤井剛<sup>1,2</sup>、福田大治<sup>1</sup>、沼田孝之<sup>1</sup>、吉澤明男<sup>1</sup> 土田英実<sup>1</sup>、井上修一郎<sup>2</sup></u>
- 1 産業技術総合研究所
- 2 日本大学 量子科学研究所

本研究の一部は、総務省戦略的情報通信研究開発推進制度の委託研究として実施しました。 また、デバイス作成に関し、(独)産業技術総合研究所IBEC イノベーションプラットフォームの支援を受けております。



0

#### 研究背景

- 超伝導転移端センサ(TES)や超伝導ナノワイヤ単一光子検出器 (SNSPD)などの超伝導光子検出器は、半導体検出器では得られ ない特徴をもっているため、量子情報通信の分野で応用されている
  - TES: 高検出効率、低暗計数、光子数識別能力
  - SNSPD:高時間分解能、低暗計数
- 超伝導光子検出器は、広検出帯域かつ高感度なため、室温での<u>黒</u> <u>体輻射</u>によって発生する近赤外の光子を検出することが暗計数の 大きな要因となっている。
- 黒体輻射によって発生した光子が光ファイバの端面から結合し、検 出器で検出することが報告されている。300 Kでは、<u>数10 Hz</u>程度で ある[1]。
- 今回、光ファイバの端面はない。新生まるたそにったいで、評価を行った







#### 光子の光ファイバへの結合





## シングルモードファイバでの最大結合角



AIST

光ファイバで発生した光子

検出器に照射される光子の総数 N

$$N(T,x) = \int_0^x dx' \int_0^r dr' \int_0^{2\pi} d\varphi \int_0^\infty d\varepsilon 2n(\varepsilon,T) L(\varepsilon) P_{Coupling}(r)$$



x:ファイバ長,r:ファイバ半径 ɛ:エネルギー,T:温度 n(ɛ,T):単位体積当りの発生率 L(ɛ):ファイバでの損失 P<sub>Coupling</sub>(r):コアへの結合効率 A:定数







#### ファイバ長と温度に対する 検出される光子のエネルギー分布



■ファイバ長が長くなるにつれて、高エネルギー(短波長)の光子が大幅に増加する。
■温度が上昇するにつれて、全体の光子の発生率が大幅に増加する。









# 波長1550 nmの光子測定





## ファイバ中で発生した光子測定 (300 K)

<u>10 m</u>





## ファイバ中で発生した光子測定 (320 K)

<u>10 m</u>





# ファイバ中で発生した光子測定 (340 K)







# ファイバ中で発生した光子測定 (360 K)

<u>10 m</u>





# ファイバ中で発生した光子測定(Fitting)

<u>10 m</u>





#### 暗計数の評価





PAIST

#### まとめ

- ■室温の黒体輻射によって、光ファイバ中で発生する 光子の評価を行った。
- ■発生する光子は、ファイバ長及び温度が増加するにしたがって大幅に増加した。
- ■測定結果は、プランクの輻射式及び光ファイバでの 損失からなる理論式と非常によく一致した。
- 長いファイバをつないだ場合、C-Bandの光子も大量に発生すると予想される。