

Current Capabilities at the Metrology Light Source

Alexander Gottwald, Roman Klein, Ralph Müller, Mathias Richter, Frank Scholze, Reiner Thornagel, and Gerhard Ulm

PTB's Metrology Light Source (MLS)

630 MeV electron storage ring
Synchrotron radiation from THz to EUV

PTB owned, HZB* operated

*Helmholtz-Zentrum Berlin, formerly BESSY

2011	2008	2006	2004
completion of	user operation		
exp. stations	•		

PTB's Metrology Light Source (MLS)

630 MeV electron storage ring
Synchrotron radiation from THz to EUV

PTB owned, HZB* operated

*Helmholtz-Zentrum Berlin, formerly BESSY

Outline

Operation

- special operation modes
- standard operation

Instrumentation

- experimental stations ("beamlines")
- single instruments
- Applications

MLS design parameters

e.g. calibration of Single Photon Avalanche Diode, see talk of I. Müller

(J. Schwinger, 1949)

MLS as primary source standard

Calculable radiation source = primary source standard

special operation modes:

variable energy variable ring current variable electron bunch length

R. Klein et al., Phys. Rev. ST Accel. Beams 11, 110701-1 (2008)

6

Bunch length variation

Special operation mode: Coherent synchrotron radiation (CSR) emission in the THz spectral range

incoherent emission

(bunch length s > 5 mm)

coherent emission

(bunch length s < 1 mm)

 $N \approx 10^8$ electrons per bunch!

The MLS has a dedicated electron optics design for the CSR mode

Intensity gain in CSR mode

... by more than 3 orders of magnitude at λ = 1 mm (ν = 0.3 THz)

MLS operation modes

HZB team optimizes operation for:

Special operation flexibility

- primary source standard
- spectral tuning
- radiant power tuning
- CSR mode for THz

VS.

Normal operation stability

- detector calibration
- reflectometry

At the MLS, easy switching of operation modes is possible!

Experimental stations at the MLS

operational before 2011 :

```
# 1a IDIR, 1c IDWL, 1e
# 2b DWL direct beam
# 4 UV/VUV
# 5 IR
# 6 THz
#7 Diagnostics
```

Synchrotron radiation beamlines operating in the spectral range from the THz to the extreme ultraviolet (EUV) regime

Experimental stations at the MLS

operational end of 2011:

1d IDB # 2a UV/VUV source cal. # 3 EUV

Synchrotron radiation beamlines operating in the spectral range from the THz to the extreme ultraviolet (EUV) regime

Undulator radiation beamline

U180:

- tunable radiation from EUV to IR
- high intensity
- high linear polarization

Monochromator beamline:

- combined NI / GI geometry,
 wavelength range 4 nm to 400 nm
- under commissioning
- prospected applications:
 cryogenic radiometry
 EUV/VUV spectroscopy, ellipsometry

Source calibration beamline

 calibration of transfer source standards to MLS

(spectral intensity, spectral radiance)

- combined GI / NI geometry in rotatable set-up for extended wavelength range 7 nm to 400 nm (BESSY II: 40 nm to 400 nm)
- 6 gratings in revolver mounting
- in operation from end 2011 onwards

Source calibration beamline

 calibration of transfer source standards to MLS

(spectral intensity, spectral radiance)

- combined GI / NI geometry in rotatable set-up for extended wavelength range 7 nm to 400 nm (BESSY II: 40 nm to 400 nm)
- 6 gratings in revolver mounting
- in operation from end 2011 onwards

EUV beamline for reflectometry

- (extended) EUV reflectometry
- wavelength range 5 nm to 50 nm (BESSY II: 0.7 nm to 35 nm)
- higher flux for λ > 20 nm than at BESSY II
- adjustable spot size at sample position
- reflectometer: currently at BESSY II,

user operation at MLS from (end of) 2012 onwards

EUV reflectometer

focal image at the beamline for different slit sizes

Instrumentation at MLS

Basic tasks:

- Spectral responsivity: 5 nm to 400 nm
- Spectral intensity, spectral radiance: 7 nm to 400 nm
- Reflectance/transmittance: 5 nm to 400 nm
- + applications (spectrometry etc.)

Detector based radiometry

MLS

radiometer

Electrical substitution cryogenic radiometer as detector standard

Optimized for VUV radiation 100 mK/µW sensitivity 120 s time constant

Comparison of MLS calculated radiant power with power measured by radiometer

R. Klein et al., Metrologia **48**, 219 (2011)

Conclusion

- MLS user operation since 2008: continuous improvement in normal operation & special operation
- MLS experimental stations:

 first set-up phase finished by end of 2011, 12 endstations in operation
- Applications & new capabilities: still to come!

Acknowledgement: HZB MLS Team PTB co-workers

Thank you