Bridging the Gap: Radiometry from Watts to Single-Photons

- A. Migdall
- B. Calkins
- C. Cromer
- M. Dowell
 - J. Fan
- T. Gerrits
- J. Lehman
 - A. Lita

D. Livigni R. P. Mirin S. W. Nam S. V. Polyakov M. Stevens N. Tomlin I. Vayshenker

NIST, Boulder & Gaithersburg

NEWRAD Maui, HI Sept 22, 2011

Outline

• Existing Radiometry and The Gap

(What this talk is and is not about)

- Bridging the Gap efforts (review)
- Hope: Single-Photon Tools
- Issues and concerns

Absolute Radiometric Standards

Radiometry

Electrical Substitution Radiometry

Bridging the Gap

Present Limits:

- "World's best" cryogenic radiometry is U = 0.01%
- Primary standards (cryogenic radiometers) operate over limited range and relatively "high" powers
 - Typical operation is ~100 uW to ~1 mW
 - Dissemination to customers degrades due to transfer standard limits ~1%
 - Optical power traceability has the poorest uncertainty of major measurands
- Difficult to link the lower range of optical powers to primary standards

No formal connection between classical methods to measure optical power and new methods to measure single photons

The gap

15 order-of-magnitude gap

between cryogenic radiometry and single photon metrology

Bridging the Gap

Opportunity: Single Photon Tools for the Gap

Light arrives in packets (quanta – photon)

$$Optical Power = Energy_{photon} \times rate$$
$$= h \times v \times rate$$

Relies only on Planck's constant, measurement of wavelength, and accurate measurement of rate

Independent of existing radiometry

Opportunity: Single Photon Tools for the Gap

Light arrives in packets (quanta – photon)

$$Optical Power = Energy_{photon} \times rate$$
$$= h \times v \times rate$$

Source: that emits a known number of photons Detector: that counts a known number of photons

Independent of existing radiometry standards & Inherently single photon

Caution!

This talk:

- What this talk *is* about:
 - "Bridging the gap" between cryogenic radiometry & photon counting
- What this talk is *not* about:
 - "Quantum Candela"

Bridging-the-Gap efforts

Nuclear Instruments and Methods in Physics Research A 610 (2009) 183-187

	Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A	HUCLEAR HISTHUMENTS A MEDICA PHYSICS RESEARCH
ELSEVIER	journal homepage: www.elsevier.com/locate/nima	Total Article Back

Providing reference standards and metrology for the few photon-photon counting community

Andrew R. Beaumont, Jessica Y. Cheung*, Christopher J. Chunnilall, Jane Ireland, Malcolm G. White

IOP PUBLISHING Metrologia 47 (2010) R33–R40 METROLOGIA doi:10.1088/0026-1394/47/5/R02

REVIEW ARTICLE

From single photons to milliwatt radiant power—electron storage rings as radiation sources with a high dynamic range

Roman Klein, Reiner Thornagel and Gerhard Ulm

Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany

Metrologia 46 (2009) S151-S154

doi:10.1088/0026-1394/46/4/S03

Reflectance calculations for a predictable quantum efficient detector

Meelis Sildoja¹, Farshid Manoocheri and Erkki Ikonen

Manoocheri talk: Wed

Bridging the Gap

Few-Photon Metrology (many talks) at NEWRAD & Single Photon Workshop 2011

- Brida: Toward Traceable Few Photon Radiometry (NEWRAD)
- Arp: Calibration Of Photomultiplier Tubes For Few Photon Applications Using Synchrotron Radiation (NEWRAD)
- Gerrits: Extending Single-Photon Optimized Superconducting Transition Edge Sensors Beyond the Single-Photon Counting Regime (NEWRAD & SPW)
- Smith: Quantum-enhanced metrology in the real world: Losses, decoherence, and noise make life on the quantum edge challenging (SPW)
- Müller: Towards Traceable Calibration of Single Photon Detectors Using Synchrotron Radiation (NEWRAD & SPW)
- Rastello: Metrology Towards Quantum-Based Photon Standards (SPW)
- Porrovecchio: A transfer standard for the low power / few photon regime the trap detector plus switched integrator amplifier (NEWRAD & SPW)
- Schmunk: Relative detection efficiency calibration of single photon avalanche photo detectors using non-classical light (SPW)
- Lehman: Fiber-Coupled Cryogenic Radiometer with Carbon Nanotube Absorber (NEWRAD)
- Götzinger, Single-photon sources with near unity efficiency (NEWRAD)
- Kück, Towards novel AIN and GaN based single photon sources (NEWRAD)

New Bridging-the-Gap efforts

Traceability for single-photon sources

The development of highly efficient quantum light sources at the single photon level and the development of entanglement assisted measurement techniques would enable classical measurement limits to be overcome. These new traceable photon sources will underpin the growth of several emerging technologies, such as optical devices for quantum communication, computing, microscopy, nanosciences, nanofabrication and other new production technologies, as well as fundamental metrology.

EMRP Call 2011 - Health, SI Broader Scope & New Technologies

Objectives: Traceability for single-photon sources

The JRP shall focus on the traceable measurement and characterisation of source-based standards for photon metrology spanning the range 1 photon/s to 10⁸ photons/s.

The specific objectives are:

- 1. To develop absolute and calculable single photon sources with high dynamic range at both telecom and visible wavelengths.
- 2. To develop efficient single-photon sources, to support for SI traceable photon radiometry.
- 3. To develop quantum optical state sources for entanglement enhanced measurements.
- 4. To develop optimised photon-coupling strategies and methods between source and detector.

The sources developed in objectives 1-3, should be characterised for photon flux, and by appropriate metrics in terms of statistics, anti-bunching, indistinguishability, degree of entanglement and sub-shot-noise as required by the application.

Why is there cause for hope?

15 order-of-magnitude gap

between cryogenic radiometry and single-photon metrology

Bridging the Gap

Single-Photon Sources

RSI 82, 071101(2011)

	Prob.	Temp.	Wave-	Wave-	Inherent	Emission	Output	$g^{(2)}(0)$	Refs
Source Type	or		$_{ m length}$	length	Bandwidth	Efficiency	Spatial		
			Range	Tunability			Mode		
	Det.	(K)	General	Specific					
Faint laser	Р	300	vis-IR	nm	GHz	1	single	1	
Two photon (heralded)–									
atomic cascade	P	_	vis-UV	MHz	atomic line	0.0001	multi	_	[122]
bulk	P	300	vis-IR	nm	nm	0.6	multi	0.0014	[123 - 125]
periodically poled	P	300-400	vis-IR	nm	nm	0.85	$multi^*$	_	[126]
waveguide (periodically poled)	P	300-400	vis-IR	\mathbf{nm}	nm	0.07	single	0.0007	[127]
gated	D	300	vis-IR	nm	nm	0.27	single	0.02	[128, 129]
multiplexed	D	300	vis-IR	nm	nm	0.1	single	0.08	[130]
FWM									
DSF	P	4 - 300	IR	nm	nm	0.02	single	_	[131]
\mathbf{BSMF}	P	300	vis-IR	nm	nm	0.26	single	0.022	[132]
\mathbf{PCF}	P	300	vis-IR	10 nm	nm	0.18	single	0.01	[133]
SOI waveguide	P	300	IR	10 nm	nm	0.17	single	-	[134]
Laser-PDC hybrid	P	300	vis-IR	nm	nm	_	single	0.37	[120]
Isolated system–									
Single Molecule	D	300	$500\text{-}750~\mathrm{nm}$	30 nm	$30 \mathrm{nm}$	0.04	multi	0.09	[135 - 137]
Color center (NV)	D	300	$640\text{-}800~\mathrm{nm}$	nm	nm	0.022	multi	0.07	[138]
QD (GaN)	D	200	$340\text{-}370~\mathrm{nm}$	nm	nm	_	multi	0.4	[106]
QD (CdSe/ZnS)	D	300	$500\mathchar`-900~nm$	nm	15 nm	0.05	multi	0.003	[139]
QD (InAs) in cavity	D	5	920-950 $\rm nm$	$10 \mathrm{GHz}$	$1 \mathrm{GHz}$	0.1	single	0.02	[140]
Single ion in cavity	D	≈ 0	atomic line	MHz	$5 \mathrm{~MHz}$	0.08	single	0.015	[141]
Single Atom in cavity	D	≈ 0	atomic line	MHz	$10 \mathrm{MHz}$	0.05	single	0.05	[142, 143]
${ m Ensemble}-$									-
Rb, Cs	D	10^{-4}	atomic line	MHz	$10 \mathrm{~MHz}$	0.2	single	0.25	[144, 145]

Progress of Single-Photon Sources (limited by detector saturation)

Single-Photon Detectors

			Effici				Max				
Detector Type	n >50%	Operation Temp.	ency	Timing Jitter,	Dark-count Rate, D	Fig (Count rate	PNR .pability	-		
		(K)	$\eta(\%), \lambda \text{ (nm)}$	(FWHM)	(ungated) (1/s)	1/10	(10 / 5)		_		
PMT (visible–near-infra	red) [271, 272]	300	40 @ 500	0.3	100	1.3×1	10^7 10	some			
PMT (infrared) $[273]$		200	2 @ 1550	0.3	200000	3.3 imes 1	10^2 10	some			
Si SPAD (thick junction) [274]	250	65 @ 650	0.4	25	6.5 imes 1	10^7 10	none			
Si SPAD (shallow junction	on) [275]	250	49 @ 550	0.035	25	5.6 imes 1	10^8 10	none			
Si SPAD (self-differencin	g) [276]	250	<u>74</u> @ 600	_	2000	_	16	some			
Si SPAD (linear-mode) [277]	78	<mark>56</mark> @ 450	_	0.0008	_	0.01	full^*			
Si SPAD (cavity) [278]		78	42 @ 780	0.035	3500	3.4×1	10^{6} 10	none			
Si SPAD (multipixel) [27	79, 280]	290	40 @ 532	0.3	25000-500000	1×1	0^4 30	some	>100) MH	Ζ
<u>Hybrid PMT</u> (PMT $+$ A	APD) [281, 282]	270	30 @ 1064	0.2	30000	5×1	$0^4 - 200 - $	none			-
Time multiplexed (Si SP	AD) [234]	250	39 @ 680	0.4	200	5×10	0^{6} 0.5	some			
Time multiplexed (Si SP	AD) [283]	250	50 @ 825	0.5	150	7×10	0^{6} 2	some			
Space multiplexed (InGa	As (SPAD) [284]	250	33 @ 1060	0.133	160000000	1.6×1	10^1 10	some			
Space multiplexed (InGa	As SPAD) [285]	250	2 @ 1550	_	_	_	0.3	none			
InGaAs SPAD (gated) [2	286]	200	10 @ 1550	0.370	91	3.0 imes 1	$10^5 ext{ } 0.01$	none			
InGaAs SPAD (self-diffe	rencing) [287]	240	10 @ 1550	0.055	16000	1.1×1	10^5 100 	none			
InGaAs SPAD (self-diffe	rencing) [267]	240	10 @ 1550	_	_	_	_	full			
InGaAs SPAD (discharge	e pulse counting) [288]	243	7 @ 1550	_	40000	_	10	none			
InP NFAD (monolithic r	negative feedback) [289, 290]	243	6 @ 1550	0.4	28000	_	10	some			
InGaAs (self-quenching a	& self-recovery) [291]	300	- @ 1550	10	_	_	3	some			
CIPD (InGaAs) [263]		4.2	<u>80</u> @ 1310	_	_	_	0.001	full			
Frequency up-conversion	[292]	300	8.8 @ 1550	0.4	13000	1.7×1	10^4 10	none			
Frequency up-conversion	[254, 293]	300	56-59@1550	_	460000	_	5	none			
Frequency up-conversion	[294]	300	20 @ 1306	0.62	2200	1.5 imes 1	10^5 10	none			
VLPC [295]	r - 1	7	88 @ 694	40	20000	1.1×1	10^3 10	some			
VLPC [296]		7	40 @ 633	0.24	25000	6.7 imes 1	10^4 10	some			
SSPM [297]		6	76 @ 702	3.5	7000	3×1	0^4 30	full			
TES(W) [298]		0.1	50 @ 1550	100	3	1.7×1	10^{6} 0.1	full			
TES(W) [299]		0.1	95 @ 1556	100	_	_	0.1	full			
TES(Ha) [300]		0.1	85 @ 850	100	_	_	0.1	full			
TES (Ti) $[301-303]$		0.1	81-98 @ 850	100	_	_	1	full			
SNSPD [304]		3	0.7 @ 1550	0.06	10	1.2×1	10^7 100	none			
SNSPD (in cavity) [253]		1.5	57 @ 1550	0.03	_	_	1000	<u>Chone</u>		-	
Parallel-SNSPD [262]		2	2 @ 1300	0.05	0.15	2.7×1	10^9 1000	some			
STJ [258, 259, 305]		0.4	45 @ 350	2000	_	_	0.01	full			
QD (resonant tunnel dio	de) [306]	4	12 @ 550	150	0.002	4×10	0^9 0.25	full			
QDOGFET (field-effect	transistor) [265, 307, 308]	4	2 @ 805	10000	150	10	0.05	full			

Radiometric Standards including single-photon tools

Bridging the Gap: from both ends

- Reaching downwards to photon counting levels
 - Cryogenic radiometers
 - Transfers from Cryogenic radiometers
 - Source standards
- Reaching upwards to cryogenic radiometry levels
 - Single photon sources-

countable single photon generation rates

 Single photon detectorscountable single photon detection rates

Extending Source Dynamic Range Downward

Synchrotron linearity through high dynamic range e⁻ beam current

11-Decade Dynamic Range achieved Radiant intensity uncertainty 0.03%* *Not including: Window transmittance, bandwidth

Irradiance uncertainty 0.36% Appl. Opt. 46 25(2007)

From single photons to milliwatt radiant power-electron storage rings as radiation sources with a high dynamic range

Roman Klein, Reiner Thornagel and Gerhard Ulm Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany

IOP PUBLISHING

Source linearity through high dynamic range Optical Density

OD=10 transmittance uncertainty=few %

Transmittance measurements for filters of optical density between one and ten

Z. M. Zhang, T. R. Gentile, A. L. Migdall, and R. U. Datla

Extending Detector Dynamic Range Downward

Si photodiode & amplifier Noise= 800 photons/sec with 400 s measurement times

Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature

Appl. Opt. 30 3091(1991) G. Eppeldauer and J. E. Hardis

1800 photon/s

Extending Cryogenic Radiometer Dynamic Range Downward

- Typical Cryo Radiometer
 - max power 1 mW
 - Noise 3 nW
 - Absolute accuracy 0.005%
- NIST pW-ACR (Carter et al. Metrologia 2009)
 - Temp sensor: noncontact TES magnetiza
 - Max power 20 nW
 - Noise 1 fW
 - Absolute accuracy 0.1%
- Fiber radiometer
 - < 1 nW noise
 - Flat absorber
 - Carbon nanotube (Lehman Tues. talk)

 Table 1. Comparison of critical construction and performance

 parameters between the current ACRII and the planned pW-AC

Receiver cavity property	ACRII	pW-ACR
Cone angle/deg	30	30
Cone diameter/cm	2.5	0.4
Responsivity/K mW ⁻¹	210	$\sim \! 30000$
Time constant/s	17	~ 50
Noise floor/pW	>8	~ 0.001
Maximum power/nW	$\sim 10^{5}$	~ 20

Fig. 5. ACR receiver subassembly.

Figure 2. Photograph of a pW-ACR receiver cavity held in place by a thin Kapton tube. The receiver cone has a base diameter of 4 mm and is made from electroformed copper plated with gold. The Kapton has very low thermal conductance but is rigid enough to hold the cavity in place.

Fully Lithographic Fiber-coupled Cryogenic Radiometer for Picowatt Powers 0.1- 70 pW

Throwing Single Photon Tools at the Gap

Single Photon Sources Advancing (limited by detector saturation)

Return to a "standard candle" – Single-photon devices that provide Single-photons on demand

- Dial in the rate
- Dial in the wavelength
- "Known optical powers" on demand to calibrate devices

Turn present radiometry measurements into high accuracy counting measurements.

Change the way optical power is disseminated!!

Quantum Dot single photon sources

Current limitations: emission rate (80 MHz) emission efficiency (0.1%) Goals: 3 GHz 99%

First direct meas. of homogeneous linewidth; emission rate up to 10 GHz theoretically possible)

New Ideas

"inverse" QD single photon detector (optical pump, electrical trigger)

3D microcavity: vertical oxide/semiconductor DBRs and transverse circular air/semiconductor DBRs

Ultimate outcome: Countable photons-from-a-box for self-service traceability

Bridging the Gap

Single Photon Detectors

	Operation	Detection	Timing	Dark-count	Figure	Max.	PNR
Detector Type	Temp.	Efficiency,	Jitter,	Rate, D	of	Count	Capability
		Wavelength	$\delta t(ns)$	(ungated)	Merit	Rate	
	(K)	$\eta(\%),\lambda~({\rm nm})$	(FWHM)	(1/s)		$(10^{6}/s)$	
PMT (visible–near-infrared) [271, 272]	300	40 @ 500	0.3	100	1.3×10^7	10	some
PMT (infrared) [273]	200	2 @ 1550	0.3	200000	3.3×10^2	10	some
Si SPAD (thick junction) [274]	250	65 @ 650	0.4	25	6.5×10^7	10	none
Si SPAD (shallow junction) [275]	250	49 @ 550	0.035	25	5.6×10^8	10	none
Si SPAD (self-differencing) [276]	250	74 @ 600	_	2000	_	16	some
Si SPAD (linear-mode) [277]	78	56 @ 450	_	0.0008	_	0.01	full^*
Si SPAD (cavity) [278]	78	42 @ 780	0.035	3500	3.4×10^6	10	none
Si SPAD (multipixel) [279, 280]	290	40 @ 532	0.3	25000-500000	1×10^4	30	some
<u>Hybrid PMT</u> (PMT + APD) [281, 282]	270	30 @ 1064	0.2	30000	5×10^4	200 <	none
Time multiplexed (Si SPAD) [234]	250	39 @ 680	0.4	200	5×10^6	0.5	some
Time multiplexed (Si SPAD) [283]	250	50 @ 825	0.5	150	7×10^{6}	2	some
Space multiplexed (InGaAs SPAD) [284]	250	33 @ 1060	0.133	160000000	1.6×10^1	10	some
Space multiplexed (InGaAs SPAD) [285]	250	2 @ 1550	_	_	_	0.3	none
InGaAs SPAD (gated) [286]	200	10 @ 1550	0.370	91	3.0×10^5	0.01	none
InGaAs SPAD (self-differencing) [287]	240	10 @ 1550	0.055	16000	1.1×10^5	100 <	попе
InGaAs SPAD (self-differencing) [267]	240	10 @ 1550	_	_	_	-	full
InGaAs SPAD (discharge pulse counting) [288]	243	7 @ 1550	_	40000	_	10	none
InP NFAD (monolithic negative feedback) [289, 290]	243	6 @ 1550	0.4	28000	_	10	some
InGaAs (self-quenching & self-recovery) [291]	300	- @ 1550	10	_	_	3	some
CIPD (InGaAs) [263]	4.2	80 @ 1310	_	_	_	0.001	full
Frequency up-conversion [292]	300	8.8 @ 1550	0.4	13000	1.7×10^4	10	none
Frequency up-conversion [254, 293]	300	56-59@1550	_	460000	_	5	none
Frequency up-conversion [294]	300	20 @ 1306	0.62	2200	1.5×10^5	10	none
VLPC [295]	7	88 @ 694	40	20000	1.1×10^3	10	some
VLPC [296]	7	40 @ 633	0.24	25000	6.7×10^4	10	some
SSPM [297]	6	76 @ 702	3.5	7000	3×10^4	30	full
TES(W) [298]	0.1	<u>50 @</u> 1550	100	3	1.7×10^6	0.1	full
TES(W) [299]	0.1	95 @ 1556	100	_	_	0.1	full
TES(Ha) [300]	0.1	85 @ 850	100	_	_	0.1	full
TES (Ti) [301–303]	0.1	81-98 @ 850	100	_	_	1	full
SNSPD [304]	3	0.7 @ 1550	0.06	10	1.2×10^7	100	none
SNSPD (in cavity) [253]	1.5	57 @ 1550	0.03	_	_	1000	- Chone
Parallel-SNSPD [262]	2	2 @ 1300	0.05	0.15	2.7×10^9	1000	some
STJ [258, 259, 305]	0.4	45 @ 350	2000	_	_	0.01	full
QD (resonant tunnel diode) [306]	4	12 @ 550	150	0.002	4×10^9	0.25	\mathbf{full}
QDOGFET (field-effect transistor) [265, 307, 308]	4	2 @ 805	10000	150	10	0.05	full

Transition Edge Sensor (TES) Microbolometer

Transition Edge Sensors – Photon Number resolving

Current performance:

Detection efficiency >95% U = ?? at 1550nm

recovery times approaching $1\mu s$

Strategy to reach goals:

Optical packaging Coating design Material science for compability of coatings with superconductors Fast electronics

Possibility:

Recovery times < 1µs Detection efficiency >99% Plus

Bridging the Gap

Smart TES signal processing

No inherent deadtime:

Deadtime-free processing:

Simple, cheap, high throughput signal processor

physics.nist.gov/Divisions/Div844/ FPGA/fpga.html

Transition Edge Sensor: Pushing the Limits

Thomas Gerrits Talk by Tomlin later today

Current performance:

Detection efficiency ~1% at 1550nm recovery times ~20ns

Strategy to reach goals:

Make Detectors at NIST Optical packaging and coating design Coating design Material science for compability of coatings with superconductors Fast electronics

Outcomes:

Detection efficiency >75% High count rates (>100 MHz)

10 μm

Extremely challenging nanofabrication and material science problem

Quantum Dot Single-Photon Detector (QDOGFET)

Current limitations: detection rate: 400 kHz* counting: 10³ photons

Goals: 1 MHz – 10 MHz 10⁴-10⁵ photons

$$10^4 \frac{\gamma}{\text{bunch}} \times 10^6 \frac{\text{bunch}}{\text{s}} = 10^{10} \text{ Hz}$$

*B. E. Kardynal, *et al*., Appl. Phys. Lett. **84**, 419 (2004).

Use the QDOGFET's number sensitive ability (over a large dynamic range) to count bunches of photons. This way you don't have to count **so fast**!

Challenges:

Speed/noise: use on-chip cryogenic amplification 10⁻¹

Overall detection efficiency: integrated resonant cavity design, solid emersion lens coupling, transparent gate

Understand the dynamic range with great precision

Bridging the Gap

Bridge Plan: Overlap power ranges

Bridging the Gap

Promise and Concern

• Single Photon radiometry: holds promise of moving radiometry to counting problem

• Efficiencies remain an issue

Common Issue: Efficiency

Trap:

Collection efficiency

99.997(3)%

Extraction efficiency

80.83(13)%

Single Photon Examples of Efficiency Issues

Götzinger: Wed Single-photon sources with near unity efficiency

Bridging the Gap

FWM Fiber Source Brightness Progress

Fiber Source Efficiency Progress

Efficiency (%)

Two-Photon Detector Efficiency Scheme No External Standards Needed!

 $\eta_1 = N_C / N_2$

Verifying the Method

Two-Photon-Based SPD Detection Efficiency Calibration

Sources of uncertainty:

. . .

DUT Collection Efficiencies Spatial Angular Spectral

Trigger counting Coincidence determination

Correlated photon calibration method uncertainty budget

Physical property	Value	Relative uncertainty of value (%)	Sonsitivity	Relative uncertainty of DE	
	Value	(70)	Selisitivity	(70)	-
Crystal reflectance	0.09249	0.2%	0.1	0.02%	
Crystal transmittance	0.99996	0.009%	1	0.009%	Q
Lens transmittance	0.97544	0.0027%	1	0.0027%	otica
Geometric collection (raster scan)	0.9995	0.05%	1	0.05%	al lo
DUT filter transmittance	0.9136	0.1%	1	0.10%	sse
Trigger bandpass to virtual bandpass/wavelength				0.07%	U1
Histogram background subtraction				0.03%	Н
Coincidence circuit correction	0.0083	10.0%	0.008	0.084%	isto
Counting statistics				0.08%	gran
Deadtime (due to rate changes with time)				0.02%	p
Trigger afterpulsing	0.0025	25.0%	0.003	0.06%	Ц
Trigger background, & statistics	175000	0.3%	0.035	0.01%	nigg
Trigger signal due to uncorrelated photons	0	0.07%	1	0.07%	;er
Trigger signal due to fiber back reflection	0.00202	1.60%	0.002	0.003%	
				0.100/	

Total

Detector substitution calibration uncertainty budget

		Relative uncertainty of value		Relative uncertainty of DE
Physical property	Value	(%)	Sensitivity	(%)
Analog transfer standard calibration (QE equivalent)	0.61906	0.10%	1	0.10%
Spatial nonuniformity at 700nm, (standard deviation of central responsivity)	1	0.025%	1	0.025%
Analog measurement statistics & drift				0.06%
Analog amplifier gain calibration	1.0022	0.050%	1	0.05%
Pinhole backside reflection	0	0.1%	1	0.10%
DUT signal & background statistics				0.003%
DUT afterpulsing	0.00322	11.6%	0.003	0.04%
DUT deadtime (due to rate changes with time)				0.02%

Summary of Single-Photon Promise and Concerns

- Single Photon radiometry: holds promise of moving radiometry to counting problem
- Efficiencies remain an issue
- Building bridges is good
- Burning a Candela requires caution