

Traceable Calibration of Silicon Single Photon Avalanche Diodes Using Synchrotron Radiation

Ingmar Müller, R. M. Klein, J. Hollandt, G. Ulm and L. Werner

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Abbestr 2-12, 10587 Berlin, Germany

> NEWRAD 2011 Maui, Hawaii 22.09.2011

- Electron storage rings as radiation sources with high dynamic range of the spectral radiant power

 the Metrology Light Source (MLS) of PTB
- Traceable calibration of Single Photon Avalanche Diodes (SPADs) using synchrotron radiation
- Outlook

Important property of synchrotron radiation

• For *N* electrons

$$\Phi_{\lambda}^{\text{Schwinger}}(\lambda, N_{e^{-}}) = N_{e^{-}} \Phi_{e^{-}, \lambda}^{\text{Schwinger}}(\lambda)(1 + \varepsilon(\lambda))$$

(incoherent operation) Number of stored electrons changes radiant power by 11 orders of magnitude without changing the emitted spectrum

 ε(λ) correction for finite vertical source size (at MLS <u>well below 10⁻⁴</u>)

Measurement of the ring current

- Huge dynamic range of the MLS (1 e⁻ to10¹¹ e⁻ stored)
- Exploitation of the strict proportionality of ringcurrent and emitted radiation

photon rate_{*Trap*} / number of stored electrons (I_{high})

Calibration – quantum efficiency

$QE_{SPAD}^{*} = \frac{count \, rate_{SPAD} \, / number \, of \, stored \, electrons(I_{low})}{photon \, rate_{Trap} \, / number \, of \, stored \, electrons(I_{high})}$

Uncorrected quantum efficiency (QE*)

Corrections

- Different detector sizes of SPAD / trap detector
- Afterpulsing probability
- Bandwidth
- Dead time
- Photon statistic

Pinhole Ø	Ø	196 µm	149 µm
Losses	0%	3.7%	4.6%

Data sheet: SPAD-diameter approx. 180 µm

Determination detector size SPADs

He-Ne laser @ 633 nm, focus diameter < 15 µm

 $FWHM = 210 \ \mu m$

→ Correction factor detector sizes of SPAD and trap detector: 1.035

Bandwidth correction

$$c_{Trap} = \frac{\hat{0}_{/}F_{MLS}(/) \times F(/) \times QE_{Trap}(/) \times d/}{QE_{Trap}(651.34nm) \times \hat{0}_{/}F_{MLS}(/) \times F(/) \times d/}$$

$$c_{SPAD} = \frac{\int_{\lambda} \Phi_{MLS}(\lambda) \cdot F(\lambda) \cdot QE_{SPAD}(\lambda) \cdot d\lambda}{QE_{SPAD}(651.34nm) \cdot \int_{\lambda} \Phi_{MLS}(\lambda) \cdot F(\lambda) \cdot d\lambda}$$

$$c_{BW} = \frac{c_{SPAD}}{c_{Trap}} = 1.0004$$

•Afterpulsing probability

- 0.14 % (SPAD1)
- 0.07 % (SPAD2)
- Dead time
 - 28 ns

t/ns

Uncertainty budget

Source of uncertainty	Correction factor	SPAD1	SPAD2
Count rate/e-		0.049%	0.047%
Ratio photocurrent trap detector to ring current, Type A		0.051%	0.051%
Ringcurrent measurement		0.048%	0.048%
Spectral responsivity		0.045%	0.045%
SPAD-positioning		0.020%	0.020%
Bandwidth	1.0004	0.019%	0.019%
Detector sizes	1.035	0.09%	0.09%
Statistic	1.00018	0.018%	
	1.00018		0.018%
Afterpulaing	0.998571	0.098%	
Alterpuising	0.999333		0.071%
Combined rel. uncertainty		0.18%	0.16%

Result

	SPAD1	SPAD2
Quantum efficiency @ 651.34 nm	0.6984	0.7069
Relative standard uncertainty	0.18%	0.16%

- First determination of QE of SPADs with synchrotron radiation
- Method works in wide spectral range
- Measurement uncertainties comparable with the two existing methods:
 - SPDC: NIST 0.18%*, NPL 0.3%†
 - Substitution Method: NIST 0.17%*, NPL 0.2%‡

- Exploitation of method with fiber coupled detectors
 - EMRP JRP IND-06 "Metrology for Industrial Quantum Communication"
- Calibrations at telecom wavelengths

• Usage of superconducting single photon detectors

Thank you for your attention