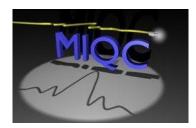
A transfer standard for the low power / few photon regime – the trap detector plus switched integrator amplifier

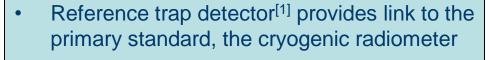
G.Porrovecchio¹, J. Y. Cheung², C. J. Chunnilall², M. Smid¹, J.R. Mountford², M.G. White²

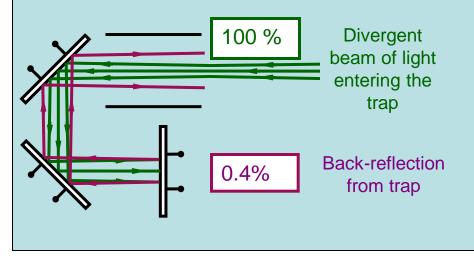
¹Czech Metrology Institute, LFM, V. Botanice 4, Praha 5, Czech Republic ²National Physical Laboratory, Teddington TW11 0LW, UK

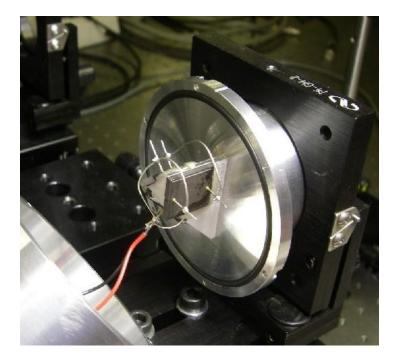
> Newrad 2011 Maui, Hawaii



Overview


1	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	photons/s
F	Photon co	unting				
	l	_ow Power				
	Analog regime					
	fW	рW	nW	μW	mW	power


- Si Trap detector detection limit
- Switched integrator amplifier (SIA)
- Trap SIA as new standard at low power
- Performances
- Measurements
- Conclusions



Primary transfer standard : trap detector

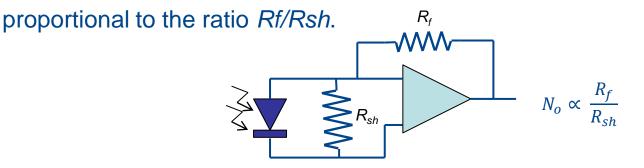
- 3 Hamamatsu S1337 photodiodes connected in parallel (currents sum)
- Low spatial response non-uniformity (~ 0.03% for 0.5 mm spot)
- Responsivity measureable with 0.02% uncertainty (k=2)
- Measured linearity better than 10⁻⁴ from 10⁻¹¹ to 10⁻³ ^[2]

[1] Fox, N.P., Metrologia, 28, 197-202, (1991)
[2] K. Nield et al "Evaluation of the linearity performance of silicon trap detectors with switch integrator amplifiers at low optical fluxes" CIE 2010

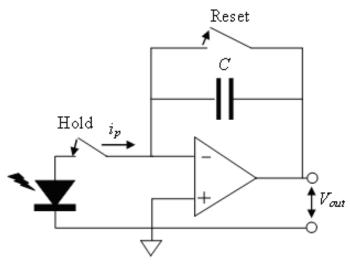
Low power measurement with photodiodes

• Noise at low power is dominated by the (Johnson noise) generated by the shunt resistor $N_j = \sqrt{\frac{4kTB}{R_{sh}(T)}}$

> Noiseless photodiode


Shunt resistor Rah

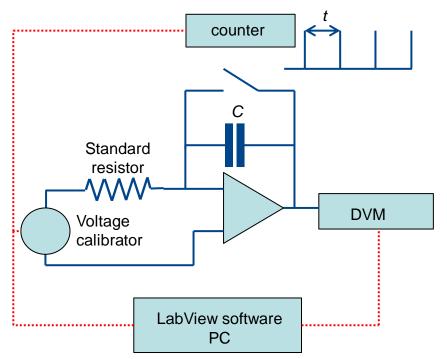
(Johnson noise)

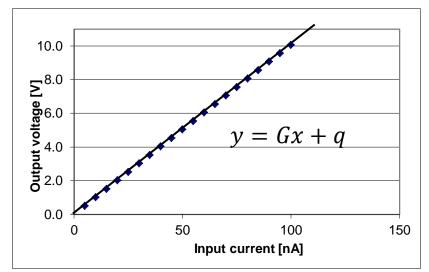

• The shunt resistor decrease with temperature (typically 15%/C)

Trap detectors

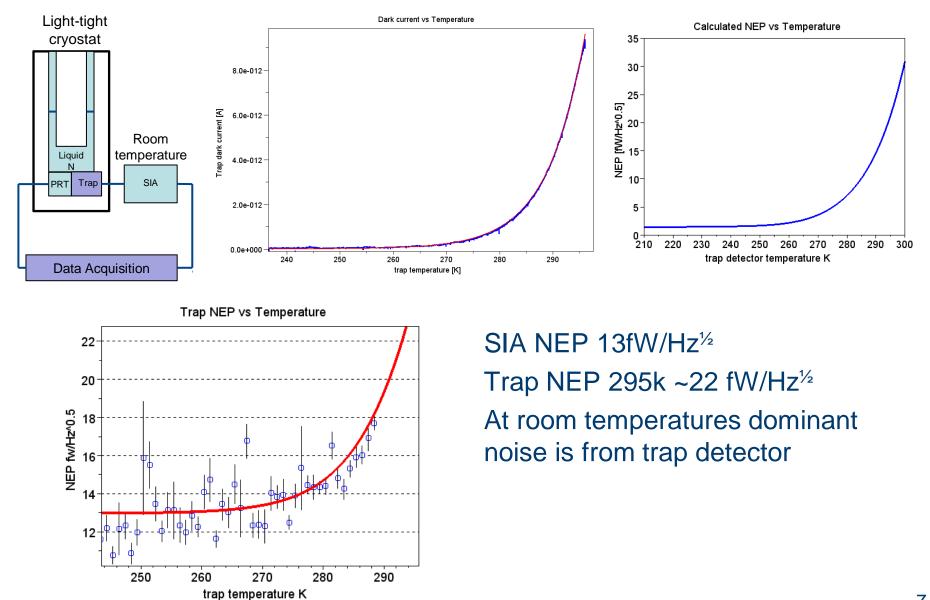
- shunt resistor of 3 elements trap detector is ~1/3 of the single element
- dark current can be as high as few pA at room temperature. Measuring low photocurrent levels requires sequence of dark and light measurements.
- The output voltage noise N_o of a transimpedance amplifier is

Switched integrator amplifier (SIA)^[3]

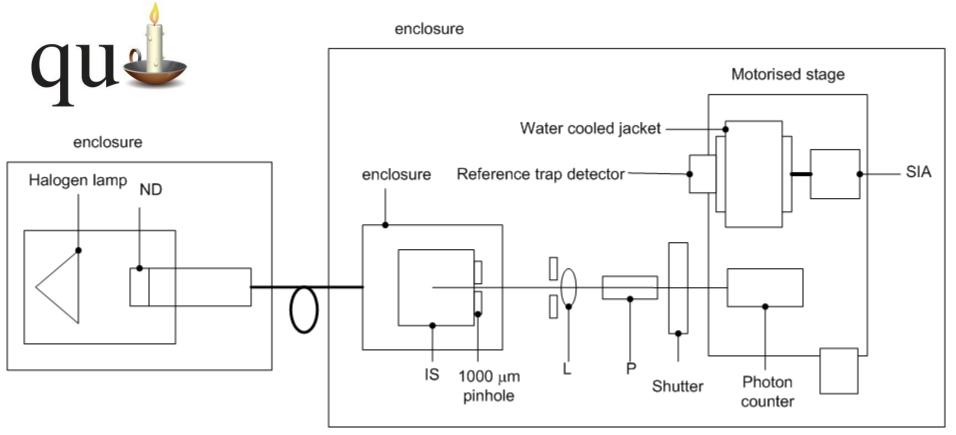

Capacitor stores the charge created in the photodetector


 $V_{out}(t) = -\frac{v_p}{C}$

- Increase gain by increasing integration time
- with 1 pF capacitor, I/V Gain 10¹¹ with integration time of 0.1 s
- Better NEP when coupled with trap detectors compared to transimpedance amplifier (NEP 25 fW/Hz^0.5 at room temperature with trap detector for a gain 10¹¹)

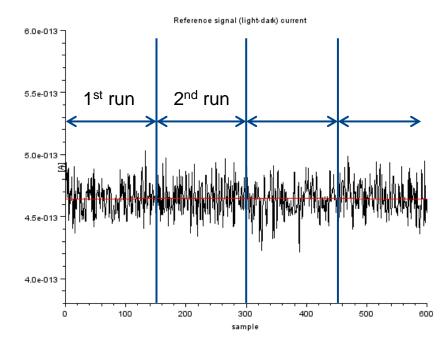

SIA calibration

- With a voltage calibrator and a standard resistor we generate 20 values of input current from 1nA to 10nA (good SNR ratio)
- A DVM reads the voltage output values
- We calculate the slope of the curve G
- A counter measures the integration time t
- We derive the capacitor value like $C = \frac{G}{t}$
- Gain values from 10⁶ to 10¹¹ with uncertainty 0.01%



Trap + SIA : noise vs temperature

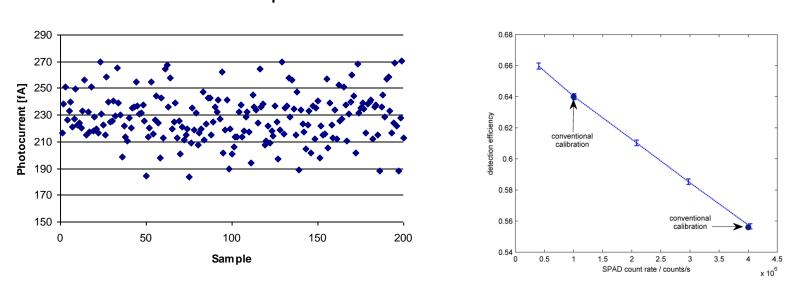
Measurement of photoncounter detection efficiency


- Temperature stabilised (16 °C): just above dew point.
- SIA gain 10¹¹ reference trap
- Power level of the stabilised lamp (~200 000 cps, ~ pW).

NPL campaign 2008-2009

0.14% agreement with parametric photon down conversion ^[4] Dominant uncertainty contribution photoncounter noise

262000


Reference trap signal 0.1% ~1pW

 $\begin{array}{c} 261800 \\ 261400 \\ 261200 \\ 261000 \\ 260800 \\ 260800 \\ 260800 \\ 260200 \\ 0 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \end{array}$

PCM light

Long settling time photo counter

[4] J. Cheung et al "Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors" Optical Express 2011

PTB campaign Berlin 2010^[4]

SEOM 0.6 % 200 samples

Absolute Measurements of irradiant flux 600 fW

[4] G. Brida et al "Toward Traceable Few Photon Radiometry", submitted to Optics Express, (2011)

Conclusions

- Trap detector and SIA new low power transfer standard
- High accuracy conventional based techniques for measurement of detection efficiency now achievable with SIA, 0.2%
- Cross validation carried out with two entirely independent techniques and campaigns with agreement ~ 0.1%

Acknowledgements

CMI

Geiland Porrovecchio, Marek Smid NPL J.Y. Cheung, C. J. Chunnilall, J. R. Mountford, M. G. White

All the partners of the EMRP Qu-candela project

To find out more: www.quantumcandela.org www.photoncount.org Coming soon: www.miqc.org

Funding:

Czech Office for Standards, Metrology and Testing UK Department for Business, Innovation & Skills; Engineering and Physical Sciences Research Council; European Community's Seventh Framework Programme, ERANET Plus, Grant Agreement No. 217257

