Extending Single-Photon Optimized Superconducting Transition Edge Sensors Beyond the Single-Photon Counting Regime

T. Gerrits, B. Calkins, N. Tomlin, A.E. Lita, A. Migdall, S.W. Nam, R.P. Mirin

Transition Edge Sensor

22nd Sept 2011

Transition Edge Sensor

Transition Edge Sensor Single photons

National Institute of Standards and Technology U.S. Department of Commerce

²²nd Sept 2011

Beyond Single Photon Counting Temporal Traces

Beyond Single Photon Counting Temporal Traces

Less sensitive over 1000 photons

Desirable operating region

Material/design: Increase TES volume to allow for smaller temperature changes

22nd Sept 2011

CONCLUSIONS

- Measurement of more than 6 million photons in a single laser pulse with 94 % efficiency
- Shot-noise limited detection for up to 1,000 photons (0.1 pW @ 1 kHz)

Larger TES will push the shot-noise limit further to > 10,000 photons

National Institute of

Standards and Technology

