Watson's Determinable Parameters |
Value a [MHz] |
Derived Parameters (assuming planarity conditions) |
Value [MHz] |
Ref. |
---|---|---|---|---|
A″ | 26 950.5017(45) | A′ | 26 930.486(4) | 73035 |
B″ | 9 212.047 34(229) | B′ | 9 212.068(2) | |
C″ | 6 845.874 52(120) | C′ | 6 845.934(1) | |
τ1 | 0.128 605(615) | τ′bbcc | -0.031 46(8) | |
τ2 | 0.008 0540(1504) | τ′ccaa | 0.041 33(47) | |
τ3 b | 0.3720(17) | τ′aabb | 0.118 74(49) | |
τaaaa | -1.221 848(481) | τaabb (1) | 0. 2179(8) | |
τbbbb | -0.082 3413(730) | τaabb (2) | 0. 2117(10) | |
τcccc | -0.015 201(78) | τaabb (3) | ||
HJ | τabab (1) | -0.0495(6) | ||
HJK | τabab (2) | -0.0445(10) | ||
HKJ | τabab (3) | -0.0433(14) | ||
HK | ||||
hJ c | Δτ | |||
hJK | ||||
hK | ||||
Rms. Dev. | 0.078 | |||
No. lines fit | 75 |
a The uncertainties quoted are
one standard deviation as estimated by the least-squares fit. The number of
significant figures quoted are necessary to reproduce the calculated transition
frequencies within their standard deviation.
b Strictly speaking, τ3 is not a determinable parameter, but is calculated from τ1, τ2, τaaaa, and τbbbb using the planarity conditions. c Watson uses 2hJ for this parameter. |
Parameter | (0, 0, 0)a | ![]() |
(0, 1, 0) b | (0, 0, 1) b | ![]() |
---|---|---|---|---|---|
A [MHz] | 26 967.13(25) | 27 264.59(43) | 26 780.09(43) | 26 071.56(61) | |
B [MHz] | 9167.06(6) | 9188.94 (13) | 9157.35(8) | 9211.42(53) | |
C [MHz] | 6830.64(6) | 6819.06(11) | 6801.95(8) | 6789.00(49) | |
τaaaa | -1.68(17) | -0.945(68) | -1.26(27) | ||
τbbbb | -0.0850 c | -0.064(7) | -0.0850 c | ||
τaabb | 0.2055 c | 0.229(31) | 0.2055 c | ||
τabab | -0.0498 c | -0.062(16) | -0.0498 c | ||
�b [D] |
1.05 d |
a See table above for the ground state
values. b Reference [74010]. c Fixed at the value determined for the ground state. d Reference [69028]. |